Supervised machine learning approaches, including support vector machines, random forests, Bayesian classifiers, nearest-neighbor similarity searching, and a conceptually distinct mapping algorithm termed DynaMAD, have been investigated for their ability to detect structurally related ligands of a given receptor with different mechanisms of action. For this purpose, a large number of simulated virtual screening trials were carried out with models trained on mechanistic subsets of different classes of receptor ligands. The results revealed that ligands with the desired mechanism of action were frequently contained in database selection sets of limited size. All machine learning approaches successfully detected mechanistic subsets of ligands in a large background database of druglike compounds. However, the early enrichment characteristics considerably differed. Overall, random forests of relatively simple design and support vector machines with Gaussian kernels (Gaussian SVMs) displayed the highest search performance. In addition, DynaMAD was found to yield very small selection sets comprising only ~10 compounds that also contained ligands with the desired mechanism of action. Random forest, Gaussian SVM, and DynaMAD calculations revealed an enrichment of compounds with the desired mechanism over other mechanistic subsets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci400359n | DOI Listing |
iScience
January 2025
Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.
Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.
View Article and Find Full Text PDFOver the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.
Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
January 2025
Department of Cardiology, Respiratory Medicine and Intensive Care, University Hospital Augsburg, Augsburg, Germany.
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.
Chem Sci
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!