The full postoperative loading of the limb is possible if patients are properly selected and qualified for hip arthroplasty and the requirements as to the proper position of the metaphysial stem are met. The lack of precision, and patient qualification which does not satisfy the fixed criteria may result in stem setting inconsistent with the assumptions. An analysis based on the finite element method (FEM) will enable one to find out how to plan the magnitude of operated joint loading on the basis of the position of the stem in the postoperative radiograph. By analyzing the distribution of bone tissue deformations one can identify the zones where the spongy bone is overloaded and determine the strain level in comparison with the one determined for a model of the bone with the stem in proper position. On the basis of the results obtained one can estimate the range of loads for the operated limb, which will not result in the loss of the stem's primary stability prior to obtaining secondary stability through osteointegration. Moreover, an analysis of the formation of bone structures around the stem showed that the incorrect setting of a Metha-type stem may lead to the initiation of loosening.

Download full-text PDF

Source

Publication Analysis

Top Keywords

proper position
8
stem
7
analysis influence
4
influence metha-type
4
metha-type metaphysical
4
metaphysical stem
4
stem biomechanical
4
biomechanical parameters
4
parameters full
4
full postoperative
4

Similar Publications

Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.

View Article and Find Full Text PDF

Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians.

Heliyon

January 2025

Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China.

Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage.

View Article and Find Full Text PDF

Re-sheathing failure with Navitor during transcatheter aortic valve implantation: a case report.

Eur Heart J Case Rep

January 2025

The Second Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.

Background: Self-expanding valves used in transcatheter aortic valve implantation (TAVI) are designed to allow recapture and repositioning, facilitating optimal placement and mitigating conduction disturbances and paravalvular leakage. Here, we present a rare case in which the Navitor (Abbott Structural Heart, Santa Clara, CA, USA) could not be recaptured.

Case Summary: An 81-year-old Japanese woman with very severe aortic stenosis and a massively calcified nodule at the non-coronary cusp (NCC) underwent TAVI with a 25 mm Navitor valve.

View Article and Find Full Text PDF

With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.

View Article and Find Full Text PDF

Artificial intelligence assisted virtual reality training module for Gasserian ganglion block.

Interv Pain Med

March 2025

Department of Anesthesiology, Perioperative, and Pain Medicine, Weill Cornell Medicine, New York, NY, USA.

•: The AI-assisted VR module enables learners to engage in a 360-degree immersive environment, manipulating holographic anatomy models and simulating fluoroscopic guidance to perform the Gasserian ganglion block.•: Key anatomical landmarks, like the foramen ovale, are highlighted, and proper C-arm positioning is demonstrated, helping practitioners localize the target area for needle advancement.•: The module includes AI-driven multi-language options and AI-generated multiple-choice questions to enhance learning and retention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!