Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Apoptosis signal-regulating kinase 1 (ASK1) is among the signaling events that lead to postischemic cell death. Inhibition of ASK1 pathway protected hearts from ischemic damage. The present study evaluated the renal protective effects of NQDI 1, an inhibitor of ASK1, in an animal model of acute ischemic renal failure. Male Wistar rats were subjected to right nephrectomy and clamping of left renal pedicle for 45 min, or sham operation. The administration of NQDI 1 attenuated renal dysfunction and histological changes characteristic for renal ischemia/reperfusion injury (IRI). Apoptosis of renal tissues, as detected by TUNEL staining, was also reduced together with p53 protein expression, and renal levels of MDA and SOD with NQDI 1 administration and BCL2 was up regulated. In conclusion, inhibition of ASK1 is of therapeutic potential against acute ischemic renal injury. Its protective effects are mediated via inhibition of apoptosis and oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/18715257113119990085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!