Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Data sets from ecological experiments can be difficult to analyze, due to lack of independence of experimental units and complex variance structures. In addition, information of interest may lie in complicated contrasts among treatments, rather than direct output from statistical tests. Here, we present a statistical framework for analyzing data sets containing non-independent experimental units and differences in variance among treatments (heteroscedasticity) and apply this framework to experimental data on interspecific competition among three tadpole species. Our framework involves three steps: (1) use a multilevel regression model to calculate coefficients of treatment effects on response variables; (2) combine coefficients to quantify the strength of competition (the target information of our experiment); and (3) use parametric bootstrapping to calculate significance of competition strengths. We repeated this framework using three multilevel regression models to analyze data at the level of individual tadpoles, at the replicate level, and at the replicate level accounting for heteroscedasticity. Comparing results shows the need to correctly specify the statistical model, with the model that accurately accounts for heteroscedasticity leading to different conclusions from the other two models. This approach gives a single, comprehensive analysis of experimental data that can be used to extract informative biological parameters in a statistically rigorous way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/12-2005.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!