Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease). However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef) were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN). These results were confirmed in Per2(Luciferase) knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to cause steatosis, disrupts the core hepatic clock as well as the diurnal rhythms of key lipid metabolism genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741117 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071684 | PLOS |
Foods
January 2025
Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile.
The aim of this study was investigating the biological diversity of lactic acid bacteria isolated from Chilean grapes and identifying potential candidates for use as malolactic fermentation starter cultures. The isolated bacteria underwent a comprehensive six-stage screening process, which was mutually exclusive except for the evaluation of tyramine production and citric acid intake. This process included morphological, metabolic, fermentation yield, and resistance tests to identify promising malolactic strains.
View Article and Find Full Text PDFFoods
January 2025
Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, osmotic stress, acid stress, elevated ethanol concentrations, and temperature fluctuations. Results revealed significant variability in glucose consumption, ethanol production, and stress tolerance across strains.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Life Science Division, Yamaguchi University Advanced Technology Institute, Ube 755-8505, Japan.
The combination of alcohol and a low-carbohydrate, high-protein, high-fat atherogenic diet (AD) increases the risk of lethal arrhythmias in apolipoprotein E/low-density lipoprotein receptor double-knockout (AL) mice with metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates whether left ventricular (LV) myocardial interstitial fibrosis (MIF), formed during the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributes to this increased risk. Male AL mice were fed an AD with or without ethanol for 16 weeks, while age-matched AL and wild-type mice served as controls.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Organic Chemistry LR17ES08, Faculty of Sciences of Sfax, University of Sfax, B.P 1171, Sfax 3038, Tunisia.
Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity.
View Article and Find Full Text PDFSci Rep
January 2025
Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan.
Obesity, a major risk factor for various metabolic diseases, often results in dysfunctional white adipose tissue and altered adipogenesis leading to ectopic fat accumulation, inflammation, and insulin resistance. On the other hand, cashew (Anacardium occidentale L.) nut worldwide consumption and production is increasing steadily, which augments the mass of byproducts to be discarded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!