The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741314 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069625 | PLOS |
Front Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of family genes in species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: To study the durability of the anti-demineralization effects of fluoride varnish after being applied to dental root surfaces.
Methods: Coronal and radicular dentin samples were prepared from extracted human teeth. Duraphat (DP) was applied to the dentine surfaces to form a protective film.
Metabolomics
January 2025
Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
Introduction And Objective: Rumex sanguineus, a traditional medicinal plant of the Polygonaceae family, is gaining popularity as an edible resource. However, despite its historical and nutritional significance, its chemical composition remains poorly understood. To deepen the understanding of the of Rumex sanguineus composition, an in-depth analysis using non-targeted, mass spectrometry-based metabolomics was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!