Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis.

PLoS One

Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, China.

Published: March 2014

Glioblastomas are the most aggressive forms of primary brain tumors due to their tendency to invade surrounding healthy brain tissues, rendering them largely incurable. The water channel protein, Aquaporin-4 (AQP4) is a key molecule for maintaining water and ion homeostasis in the central nervous system and has recently been reported with cell survival except for its well-known function in brain edema. An increased AQP4 expression has been demonstrated in glioblastoma multiforme (GBM), suggesting it is also involved in malignant brain tumors. In this study, we show that siRNA-mediated down regulation of AQP4 induced glioblastoma cell apoptosis in vitro and in vivo. We further show that several apoptotic key proteins, Cytochrome C, Bcl-2 and Bad are involved in AQP4 signaling pathways. Our results indicate that AQP4 may serve as an anti-apoptosis target for therapy of glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741385PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066751PLOS

Publication Analysis

Top Keywords

water channel
8
channel protein
8
protein aquaporin-4
8
induced glioblastoma
8
glioblastoma cell
8
cell apoptosis
8
brain tumors
8
aqp4
5
knockdown water
4
aquaporin-4 induced
4

Similar Publications

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.

View Article and Find Full Text PDF

Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies.

View Article and Find Full Text PDF

Objectives: To investigate the effects of selenium on functional and histopathological changes and mRNA expression levels of insulin-like growth factors 1 and 2 (IGF-1 and -2) and aquaporins 4 and 5 (AQP-4 and -5) in 131I-induced damaged rat parotid glands.

Methods: Rats were divided into three groups: iodotherapy-with-selenium, iodotherapy-only, and control. Rats in the iodotherapy-with-selenium group were intragastrically administered 131I on the first day and selenomethionine through drinking water.

View Article and Find Full Text PDF

On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics.

Anal Chem

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.

View Article and Find Full Text PDF

Roof water inrush in coal mining is a significant type of water-related disaster that usually results from the interconnection of water-bearing geological formations formed by cracks during and after work face mining. Therefore, monitoring roof water infiltration is of paramount importance in preventing or mitigating water inrush in the mine work face. This study employed the roof borehole electrical resistivity tomography method to conduct physical experiments for monitoring water seepage in roof cracks generated during coal model mining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!