Background: The aim of this study was to examine the putative protective effect of calcium channel blockers on hippocampal neurons in the experimental model of excitotoxic damage.
Methods: Seven-day old primary dissociated cultures of rat hippocampal neural cells containing one of the following calcium channel blockers: cinnarizine, flunarizine or nimodipine were exposed to glutamate-induced injury. Quantitative assessments of neuronal injury were accomplished by measuring lactate dehydrogenase (LDH) activity in the media 24 h after exposure to glutamate and by counting and establishing the apoptotic and necrotic cells in flow cytometry with Annexin V-FITC/PI staining.
Results: In our experiment, glutamate induced a 339% elevation of apoptotic cells and a 289% increase of necrotic cells in hippocampal neurons as compared to control cultures without drugs. In cultures containing flunarizine, glutamate-induced cell apoptosis was suppressed by 62% while necrosis showed no significant alternation. Cinnarizine exerted no anti-apoptotic effects on glutamate-injured cultured hippocampal neurons, while nimodipine intensified the apoptotic pathway of cell death and promoted an increase in the number of apoptotic neurons by 26%. When cinnarizine or nimodipine were used, the percentage of necrotic cells was significantly lower when compared with glutamate-injured cultures and it amounted to 44% and 24% for cinnarizine and nimodipine, respectively.
Conclusions: The obtained results suggest the beneficial anti-apoptotic potential of flunarizine and the anti-necrotic potential of cinnarizine against glutamate-induced death of cultured hippocampal neurons. Nimodipine can protect neurons against necrosis, but has an intensified adverse pro-apoptotic effect on cultured neurons in the experimental model of excitotoxic injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1734-1140(13)71052-1 | DOI Listing |
J Biol Chem
December 2024
Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. Electronic address:
The remyelination process within the diabetes mellitus (DM) brain is inhibited, and dynamic interactions between DNA methylation and transcription factors are critical for this process. Repressor element-1 silencing transcription factor (REST) is a major regulator of oligodendrocyte differentiation, and the role of REST on DM remyelination remains to be investigated. Here, we investigated the effects of REST and DNA methylation on DM remyelination and explored the underlying mechanisms.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
Epilepsy is a common brain function disorder. The present study aims to evaluate the long-term effect of perampanel (PRM) and lacosamide (LCM), administered singly in a high-dose or in a low-dose combination of both, on comorbid anxiety, cognitive impairment, BDNF, and Cyclin D1 hippocampal expression in an experimental model of temporal lobe epilepsy with lithium-pilocarpine. PRM (3 mg/kg, p.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.
In 1979, I joined Jim Ranck's group in Brooklyn and began recording hippocampal neurons. The first project was to record single neurons across three behaviors in different chambers: pellet retrieval on a radial-arm maze, bar-pressing for food reward in an operant chamber, and maternal pup-retrieval in a large home box. We found spatial firing in all three chambers, with a single-neuron's firing pattern unpredictable from one chamber to the next.
View Article and Find Full Text PDFTransl Neurodegener
December 2024
Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.
Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.
Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
Objectives: To explore the neuroprotective mechanism of electroacupuncture at the acupoints and in rats with cerebral ischemia-reperfusion (IR) injury.
Methods: Forty-eight male SD rats were equally randomized into sham operation group, cerebral IR model group, acupoint electroacupuncture group and non-acupoint acupuncture group. In the latter 3 groups, cerebral focal ischemic injury was induced using the Longa method; in the two electroacupuncture groups, electroacupuncture was performed either at the acupoints and or at non-acupoint sites for 7 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!