A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of miR-205 impairs the wound-healing process in human corneal epithelial cells by targeting KIR4.1 (KCNJ10). | LitMetric

Purpose: The aim of the study was to test the hypotheses that injury stimulates the expression of miR-205, which in turn inhibits KCNJ10 channels by targeting its 3' UTR, thereby facilitating the wound-healing process in human corneal epithelial cells (HCECs).

Methods: A stem-loop qRT-PCR was used to examine the miR-205 expression. BrdU cell proliferation assay and wound scratch assay were applied to measure the effect of miR-205 mimic or antagomer in HCECs. The patch-clamp technique, dual luciferase reporter assay, and Western blot analysis were employed to test whether miR-205 regulates KCNJ10, one of the target genes of miR-205. Both of the primary human and mouse corneal epithelial cells (pH/MCECs) were employed to further confirm the observations obtained in HCECs.

Results: The scratch injury in pH/MCECs increased the expression of miR-205 and decreased the expression of KCNJ10 within 24 hours. The notion that miR-205 may target KCNJ10 was supported by dual luciferase reporter assay showing an inhibition effect of miR-205 on 3' UTR of KCNJ10. Application of miR-205 antagomer significantly delayed the regrowth in wounded HCECs. However, inhibition of KCNJ10 partially abolished the effect from miR-205 antagomer and restored the healing process. Moreover, overexpression miR-205 antagomer enhanced the protein expression of KCNJ10 but not KCNJ16. In addition, patch-clamp demonstrated that inhibition of endogenous miR-205 expression increased Ba²⁺-sensitive inwardly rectifying K⁺ channels. In addition, an electrophysiological study of pHCECs showed the presence of KCNJ10-like 20 pS K⁺ channels and scratch injury significantly decreased the Ba²⁺-sensitive inwardly rectifying K⁺ currents.

Conclusions: miR-205 stimulates wound healing by inhibiting its target gene KCNJ10.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.12-11577DOI Listing

Publication Analysis

Top Keywords

mir-205
13
corneal epithelial
12
epithelial cells
12
mir-205 antagomer
12
kcnj10
9
inhibition mir-205
8
wound-healing process
8
process human
8
human corneal
8
expression mir-205
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!