Endothelial G protein-coupled receptor kinase 2 regulates vascular homeostasis through the control of free radical oxygen species.

Arterioscler Thromb Vasc Biol

From the Department of Medicine and Surgery, University of Salerno, Salerno, Italy (M.C., E.C., G.l.); Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, PA (M.C.); Department of Biomedical Sciences, University of Naples Federico II, Naples, Italy (D.S., A.F., C.D.G., R.A., M.G.M., B.T.); Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (G.W.D.); and IRCCS Multimedica, Milan, Italy (G.I.).

Published: October 2013

Objective: The role of endothelial G protein-coupled receptor kinase 2 (GRK2) was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2(fl/fl)).

Approach And Results: Aortas from Tie2-CRE/GRK2(fl/fl) presented functional and structural alterations as compared with control GRK2(fl/fl) mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species was increased, leading to expression of cytokines. Chronic treatment with a reactive oxygen species scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities, and reducing macrophage infiltration.

Conclusions: These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial reactive oxygen species production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262246PMC
http://dx.doi.org/10.1161/ATVBAHA.113.302262DOI Listing

Publication Analysis

Top Keywords

oxygen species
16
reactive oxygen
12
endothelial protein-coupled
8
protein-coupled receptor
8
receptor kinase
8
vascular phenotype
8
endothelial
4
kinase regulates
4
regulates vascular
4
vascular homeostasis
4

Similar Publications

Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment.

Nanoscale Horiz

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced.

View Article and Find Full Text PDF

This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.

View Article and Find Full Text PDF

Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress.

Front Cell Dev Biol

January 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.

View Article and Find Full Text PDF

A multifunctional photothermal electrospun PLGA/MoS@Pd nanofiber membrane for diabetic wound healing.

Regen Biomater

December 2024

Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.

View Article and Find Full Text PDF

Background: Polydatin (3,4',5-trihydroxy-3-β-d-glucopyranoside, PD) is known for its antioxidant and anti-inflammatory properties. Oxaliplatin (OXA)-based chemotherapy is the first-line treatment for metastatic and recurrent colorectal cancer (CRC). However, the lack of selectivity for normal cells often results in side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!