Rhodium-catalyzed oxidative coupling reactions via C-H activation and annulation directed by phosphonamide and phosphinamide groups were developed under aerobic conditions, which produced benzazaphosphole 1-oxides and phosphaisoquinolin-1-oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc44995eDOI Listing

Publication Analysis

Top Keywords

rhodium-catalyzed oxidative
8
oxidative coupling
8
c-h activation
8
activation annulation
8
annulation directed
8
directed phosphonamide
8
phosphonamide phosphinamide
8
phosphinamide groups
8
coupling c-h
4
groups rhodium-catalyzed
4

Similar Publications

We present a comprehensive account on the evolution of a synthetic platform for a subfamily of ent-pimaranes. For the most complex member, norflickinflimiod C, five distinct strategies relying on either cationic or radical polyene cyclizations to construct the requisite tricyclic carbon scaffold were explored. Insights from early and late stage oxidative and reductive dearomatization studies ultimately led to a mild, rhodium-catalyzed arene hydrogenation for the final synthetic route.

View Article and Find Full Text PDF

Density functional theory calculations uncovered a new mechanism for the rhodium-catalyzed decarbonylative annulation of isatoic anhydride with alkynes, in which the acyloxy group formed from the N-H deprotonation and C-O bond cleavage of isatoic anhydride acts as the directing group to assist the C-H activation. From the generated five-membered rhodacycle intermediate, the final aminoisocoumarin product could be formed by subsequent steps of alkyne insertion, reductive elimination, decarbonylation, and protonation. The isocyanate moiety contained in the annulation intermediate was uncovered as a novel internal oxidant for the reaction, which oxidizes the Rh(I) to Rh(III) by decarbonylation.

View Article and Find Full Text PDF

Rhodium catalyzed arene alkenylation reactions with arenes and olefins using dioxygen as the direct oxidant (e.g., , , 11519), Cu(II) carboxylates (e.

View Article and Find Full Text PDF

Additive-Controlled Divergent Synthesis of Fluorenone-4-carboxylic Acids and Diphenic Anhydrides via Rhodium-Catalyzed Oxidative Dimeric Cyclization of Aromatic Acids.

Org Lett

September 2024

Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China.

A rhodium-catalyzed one-pot access to valuable polycyclic frameworks of fluorenone-4-carboxylic acids and diphenic anhydrides via the oxidative dimeric cyclization of aromatic acids has been developed. This transformation proceeded via carboxyl-assisted 2-fold C-H activation followed by intramolecular Friedel-Crafts or dehydration reactions. The silver salt additive plays a vital role in the chemoselectivity of the products.

View Article and Find Full Text PDF

A direct ortho-Csp-H acylalkylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with unsubstituted and substituted allyl alcohols is achieved in high yields through Rh(III)-catalyzed C-H bond activation process. The additional employment of Cu(OAc)⋅2HO as an oxidant detour the reaction towards [4+1] annulation, producing 13-(2-oxopropyl)-13H-indazolo[1,2-b]phthalazine-6,11-diones in moderate yields. Interestingly, Lawesson's reagent-mediated conditions accomplished intramolecular cyclization in ortho-(formylalkylated)-2,3-dihydrophthalazine-1,4-diones to produce diazepino[1,2-b]phthalazine-diones in moderate yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!