Resonance energy transfer in self-organized organic/inorganic dendrite structures.

Nanoscale

Centro de Física de Materiales (MPC, CSIC-UPV/EHU), Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain.

Published: October 2013

Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7-1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i) J-aggregates are coupled to QDs by Förster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr03016dDOI Listing

Publication Analysis

Top Keywords

energy transfer
8
dendrite structures
8
quantum dots
8
resonance energy
4
transfer self-organized
4
self-organized organic/inorganic
4
organic/inorganic dendrite
4
structures hybrid
4
hybrid materials
4
materials formed
4

Similar Publications

Cubic silicon-carbide crystals (3C-SiC), known for their high thermal conductivity and in-plane stress, hold significant promise for the development of high-quality (Q) mechanical oscillators. We reveal degeneracy-breaking phenomena in 3C-phase crystalline silicon-carbide membrane and present high-Q mechanical modes in pairs or clusters. The 3C-SiC material demonstrates excellent microwave compatibility with superconducting circuits.

View Article and Find Full Text PDF

To investigate the influence of the position and quantity of thiophene or acetylene groups on the photoelectric properties of dye-sensitized solar cells (DSSCs), density functional theory (DFT) were employed to simulate five zinc porphyrin dye molecules (T-3, T-3-D, T-3-A, T-3-AD, and T-3-ace). The optimized geometry indicated that T-3-ace possessed superior planar properties, attributed to incorporating the acetylene groups, facilitating the charge transfer process. The lower lowest unoccupied molecular orbital (LUMO) energy levels of T-3-ace and T-3-D suggested that introducing thiophene or acetylene groups on the donor side enhanced the electron absorption capability of the dyes.

View Article and Find Full Text PDF

A highly selective naphthalimide based fluorescent probe PBQ was designed for investigation of doxycycline (DOX) in various real samples. The synthesized probe PBQ showed maximum emission intensity at 395 nm and exhibited selective quenching response-based on photoinduced electron transfer (PET) mechanism even in the presence of various competing and interfering drugs, amino acids, cations and anions. Furthermore, probe PBQ showed excellent AIEE properties with red shift in maximum emission wavelength due to formations of J-aggregates.

View Article and Find Full Text PDF

This work explores use of a few-shot transfer learning method to train and implement a convolutional spiking neural network (CSNN) on a BrainChip Akida AKD1000 neuromorphic system-on-chip for developing individual-level, instead of traditionally used group-level, models using electroencephalographic data. The efficacy of the method is studied on an advanced driver assist system related task of predicting braking intention. \emph{Approach}: Data are collected from participants operating an NVIDIA JetBot on a testbed simulating urban streets for three different scenarios.

View Article and Find Full Text PDF

Condensate droplet roaming on nanostructured superhydrophobic surfaces.

Nat Commun

January 2025

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.

Jumping of coalescing condensate droplets from superhydrophobic surfaces is an interesting phenomenon which yields marked heat transfer enhancement over the more explored gravity-driven droplet removal mode in surface condensation, a phase change process of central interest to applications ranging from energy to water harvesting. However, when condensate microdroplets coalesce, they can also spontaneously propel themselves omnidirectionally on the surface independent of gravity and grow by feeding from droplets they sweep along the way. Here we observe and explain the physics behind this phenomenon of roaming of coalescing condensate microdroplets on solely nanostructured superhydrophobic surfaces, where the microdroplets are orders of magnitude larger than the underlaying surface nanotexture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!