Objectives: 1) To investigate the feasibility of combining transcranial direct current stimulation (tDCS) to the lower extremity (LE) motor cortex with novel locomotor training to facilitate gait in subjects with chronic stroke and low ambulatory status, and 2) to obtain insight from study subjects and their caregivers to inform future trial design.

Methods: Double-blind, randomized controlled study with additional qualitative exploratory descriptive design. One-month follow-up.10 subjects with stroke were recruited and randomized to active tDCS or sham tDCS for 12 sessions. Both groups participated in identical locomotor training with a robotic gait orthosis (RGO) following each tDCS session. RGO training protocol was designed to harness cortical neuroplasticity. Data analysis included assessment of functional and participation outcome measures and qualitative thematic analysis.

Results: Eight subjects completed the study. Both groups demonstrated trends toward improvement, but the active tDCS group showed greater improvement than the sham group. Qualitative analyses indicated beneficial effects of this combined intervention.

Conclusions: It is feasible to combine tDCS targeting the LE motor cortex with our novel locomotor training. It appears that tDCS has the potential to enhance the effectiveness of gait training in chronic stroke. Insights from participants provide additional guidance in designing future trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349529PMC
http://dx.doi.org/10.3233/NRE-130929DOI Listing

Publication Analysis

Top Keywords

locomotor training
16
novel locomotor
12
chronic stroke
12
training robotic
8
robotic gait
8
gait orthosis
8
motor cortex
8
cortex novel
8
active tdcs
8
tdcs
7

Similar Publications

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated.

View Article and Find Full Text PDF

Exoskeletons are used in rehabilitation centers for people with spinal cord injuries (SCI) due to the potential benefits they offer for locomotor rehabilitation. The acceptability of exoskeletons is crucial to promote rehabilitation and to ensure a successful implementation of this technology. The objective was to explore the acceptability of overground wearable powered exoskeleton used in rehabilitation among people with SCI.

View Article and Find Full Text PDF

Objective: Therapeutic translation is challenging in spinal cord injury (SCI) and large animal models with high clinical relevance may accelerate therapeutic development. Pigs have important anatomical and physiological similarities to humans. Intraspinal inflammation mediates SCI pathophysiology.

View Article and Find Full Text PDF

Revealing the synergistic impacts of ZIF-8 and copper co-exposure on zebrafish behavior, tissue damage, and intestine microbial community.

Environ Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

The application of metal-organic frameworks (MOFs) has garnered significant attention in contemporary research. However, the impacts of MOFs on aquatic environments remain largely unclear. This study revealed that the water stability of ZIF-8 is influenced by its concentration, with lower concentrations resulting in higher percentages of Zn release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!