Recent evidence implicated aberrant mammalian target of rapamycin (mTOR)-dependent signaling in both Alzheimer's disease (AD) and brain tumors. This review focuses on the potential mechanisms shared by both neurodegeneration and carcinogenesis. In particular, attention was paid to the possible roles of mTOR-dependent signaling in these two fundamental pathophysiological processes. We hypothesize that common stresses could lead either to progressive degeneration or uncontrolled carcinogenesis via cell type specific upregulation of mTOR-dependent signaling in the central nervous system while mTOR-mediated carcinogenesis might permit glial cells to escape from degeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-130641 | DOI Listing |
Am J Physiol Lung Cell Mol Physiol
January 2025
Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.
View Article and Find Full Text PDFSci Transl Med
January 2025
Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA.
Mutations in lipid regulator genes are a frequent cause of autism spectrum disorder, including those regulating phosphatidylinositol (PI) and phosphoinositide 3-kinase signaling. encodes a key acyltransferase in PI synthesis and is mutated in an autism-related condition with neurodevelopmental delay and epilepsy. Using liquid chromatography-tandem mass spectrometry, we analyzed the PI-associated glycerolipidome in mice and humans during neurodevelopment and found dynamic regulation at times corresponding to neural apoptosis in the brains of knockout mice.
View Article and Find Full Text PDFPhytomedicine
December 2024
Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China. Electronic address:
Background: Autophagy has been recently emerged as a prominent factor in the pathogenesis of ischemic stroke (IS) and is increasingly being considered as a potential therapeutic target for IS. Gnetum parvifolium has been identified as a potential therapeutic agent for inflammatory diseases such as rheumatism and traumatic injuries. However, the pharmacological effects of Gnetupindin A (GA), a stilbene compound isolated from Gnetum parvifolium, have not been fully elucidated until now.
View Article and Find Full Text PDFIslets
December 2024
Department of Stomatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
Neuregulin 4 (Nrg4) is a brown fat-enriched endocrine factor that ameliorates lipid metabolism disorders. Autophagy is critical for pancreatic β-cell to counteract lipotoxicity-induced apoptosis. This study aimed at exploring whether Nrg4 attenuates lipotoxicity-induced β-cell apoptosis by regulating autophagy.
View Article and Find Full Text PDFBMC Med
October 2024
Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Background: Transmembrane 9 superfamily member 1 (TM9SF1) is involved in inflammation. Since both inflammatory and autoimmune diseases are linked to immune cells regulation, this study investigated the association between TM9SF1 expression and autoimmune disease activity. As B cell differentiation and autoantibody production exacerbate autoimmune disease, the signaling pathways involved in these processes were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!