Triacylglycerols (TAGs) from microalgae can serve as feedstock for the production of biofuels. To gain a comprehensive understanding of TAG metabolism in algae through genetic and molecular approaches, and to improve algal biofuel production, efficient and quantitative phenotyping methods focusing on TAGs are required. Towards this end, a facile ultrahigh performance liquid chromatography-mass spectrometry protocol was developed for TAG profiling, achieving identification and quantification of intact TAG molecular species in two algae. TAG profiling was performed in Chlamydomonas reinhardtii and Nannochloropsis oceanica grown in nitrogen (N)-replete or N-depleted medium. For the quantification of algal TAGs and fatty acids, two sets of internal standards were developed by taking advantage of the presence of pheophytin and specific fatty acids in algal samples. Comparison of algal TAG levels was simplified by using these internal standards for TAG analysis, paving the way for high-throughput mutant screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.07.088 | DOI Listing |
Plants (Basel)
December 2024
Institute of Basic Biological Problems, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.
The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA.
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.
Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!