A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of architecture on the micellar properties of poly (ɛ-caprolactone) containing sulfobetaines. | LitMetric

Effect of architecture on the micellar properties of poly (ɛ-caprolactone) containing sulfobetaines.

Colloids Surf B Biointerfaces

College of Polymer Science and Engineering, Sichuan University, Sichuan 610065, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Sichuan 610065, PR China.

Published: December 2013

Linear and star-shape poly(ɛ-caprolactone)-b-poly(N-(3-sulfopropyl)-N-methacryloxyethyl-N,N-diethylammoniumbetaine) (L/sPCL-b-PDEAS) with 4 and 6 arms were synthesized with the combination of Ring Opening Polymerization (ROP) and Atom Transfer Radical Polymerization (ATRP). These copolymers self-assembled into micelles via solvent evaporation method. The critical micelle concentration (CMC), determined by fluorescence spectroscopy using pyrene as a probe, was lower than 10(-3)mg/mL and decreased with increasing arm numbers. Atom force microscopy (AFM) images showed that the micelles were spherical in shape with narrow size distribution. The hydrophobic drug model carotene was efficiently loaded in the polymeric micelles. The sizes and drug loading content (DLC) of the carotene-loaded micelles increased with increasing drug content in feed. In vitro drug release experiment demonstrated that the release rate of carotene from the micelles was closely related to the arm numbers and drug loading content. Linear copolymer micelles showed the fastest release rate, 4-arm star shape copolymer micelles exhibited the lowest release rate. The micelles with higher drug loading content showed lower release rate. The release kinetics of carotene from micelles fitted the Ritger-Peppas equation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.07.038DOI Listing

Publication Analysis

Top Keywords

release rate
16
drug loading
12
loading content
12
micelles
9
arm numbers
8
carotene micelles
8
copolymer micelles
8
drug
6
release
6
architecture micellar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!