Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Materials that are resistant to nonspecific protein adsorption are critical in the biomedical community. Specifically, nonfouling implantable biomaterials are necessary to reduce the undesirable, but natural foreign body response. The focus of this investigation is to demonstrate that polyampholyte hydrogels prepared with equimolar quantities of positively charged [2-(acryloyloxy)ethyl] trimethylammonium chloride (TMA) and negatively charged 2-carboxyethyl acrylate (CAA) monomers are a viable solution to this problem. TMA/CAA hydrogels were prepared and their physical and chemical properties were characterized. The fouling resistance of the TMA/CAA hydrogels were assessed at varying cross-linker densities using enzyme-linked immunosorbant assays (ELISAs). The results clearly demonstrate that TMA/CAA hydrogels are resistant to nonspecific protein adsorption. A unique advantage of the fouling resistant TMA/CAA system is that bioactive proteins can be covalently attached to these materials using standard conjugation chemistry. This was demonstrated in this study through a combination of ELISA investigations and short-term cell adhesion assays. The multifunctional properties of the TMA/CAA polyampholyte hydrogels shown in this work clearly demonstrate the potential for these materials for use as tissue regeneration scaffolds for many biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm4007369 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!