Effective tight-binding models have been introduced to describe vertical electronic excitations in branched conjugated molecules. The excited-state electronic structure is characterized by quantum particles (excitons) that reside on an irregular lattice (graph) that reflects the molecular structure. The methodology allows for the exciton spectra and energy-dependent exciton scattering matrices to be described in terms of a small number of lattice parameters which can be obtained from quantum-chemical computations using the exciton scattering approach as a tool. We illustrate the tight-binding model approach using the time-dependent Hartree-Fock computations in phenylacetylene oligomers. The on-site energies and hopping constants have been identified from the exciton dispersion and scattering matrices. In particular, resonant, as well as bound states, are reproduced for a symmetric quadruple branching center. The capability of the tight-binding model approach to describe the exciton-phonon coupling and energetic disorder in large branched conjugated molecules is briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4818156 | DOI Listing |
Toxicol Mech Methods
January 2025
Centers for Disease Control and Prevention, Division of Science Integration, Risk Evaluation Branch, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.
Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone.
View Article and Find Full Text PDFZoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order. Infections in bats are largely asymptomatic, indicating limited tissue-damaging inflammation and immunopathology.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Department of Medicine, Division of Pulmonary/Allergy/Critical Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
SUMMARY (the "pneumococcus") is a significant human pathogen. The key determinant of pneumococcal fitness and virulence is its ability to produce a protective polysaccharide (PS) capsule, and anti-capsule antibodies mediate serotype-specific opsonophagocytic killing of bacteria. Notably, immunization with pneumococcal conjugate vaccines (PCVs) has effectively reduced the burden of disease caused by serotypes included in vaccines but has also spurred a relative upsurge in the prevalence of non-vaccine serotypes.
View Article and Find Full Text PDFAging Cell
January 2025
Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.
View Article and Find Full Text PDFThis paper proposes a conformal high-efficiency ultra-thin flexible rectifying metasurface (RMS) with a simple structure applied for wireless power transferring (WPT), featuring polarization insensitivity and wide-angle incidence capabilities. The RMS unit adopts a rotationally symmetric structure consisting of double rings and cross-shaped elements, with two diodes placed in the gap of the cross-shaped to achieve polarization insensitivity. Simultaneously, by adjusting the dimensions of the "double ring and cross" structure, its output impedance is varied to achieve conjugate matching with the diode input impedance, thereby eliminating the impedance matching network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!