We demonstrate a supramolecular approach to the fabrication of self-powered micropumps based on "host-guest" molecular recognition between α- and β-cyclodextrin and trans-azobenzene. Both hydrogels and surface coatings based on host-guest partners were used as scaffolds to devise the micropumps. These soft micropumps are dual stimuli-responsive and can be actuated either by light or by introducing guest molecules. Furthermore, the micropumps can be recharged through reversible host-guest interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn402173w | DOI Listing |
Macromol Rapid Commun
January 2025
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China. Electronic address:
The healing of infected wounds is a complex and dynamic process requiring tailored treatment strategies that address both antimicrobial and reparative needs. Despite the development of numerous drugs, few approaches have been devised to optimize the timing of drug release for targeting distinct phases of infection control and tissue repair, limiting the overall treatment efficacy. Here, a stimuli-responsive microsphere encapsulating dual drugs was developed to facilitate differential drug release during distinct phases of antibacterial and repair promotion, thereby synergistically enhancing wound healing.
View Article and Find Full Text PDFAdv Mater
December 2024
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China.
Smart wearable devices with dynamically reversible color displays are crucial for the next generation of smart textiles, and promising for bio-robots, adaptive camouflage, and visual health monitoring. The rapid advancement of technology brings out different categories that feature fundamentally different color-reversing mechanisms, including thermochromic, mechanochromic, electrochromic, and photochromic smart wearables. Although some reviews have showcased relevant developments from unique perspectives, reviews focusing on the advanced design of flexible chromic wearable devices within each category have not been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!