Ascorbate-reduced dopamine beta-hydroxylase (DBH) is inhibited by CO in a competitive manner with respect to molecular O2. Measurement of the stoichiometry of CO binding indicates 0.50 CO bound per Cu(I), which provides the first evidence that the Cu(I) centers in the reduced enzyme are structurally inequivalent. FTIR spectroscopy has been used to detect an infrared absorption band characteristic of coordinated CO, with v(CO) = 2089 cm-1. Comparison of this frequency with those of other Cu(I)-carbonyls in both inorganic and protein systems suggests a coordination site with fewer or less basic ligands than the 3-histidine site of carbon-monoxy hemocyanin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dopamine beta-hydroxylase
8
cui centers
8
characterization carbon
4
carbon monoxide
4
monoxide complex
4
complex reduced
4
reduced dopamine
4
beta-hydroxylase evidence
4
evidence inequivalence
4
inequivalence cui
4

Similar Publications

Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading.

Cardiovasc Res

December 2024

Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.

Aims: Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Innervation of the female internal genital organs in 12-week-old porcine foetuses.

Pol J Vet Sci

December 2024

Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.

This is the first study aimed to investigate the innervation of the internal genital organs in 12-week-old female pig foetuses using single and double-labelling immunofluorescence methods. Immunostaining for protein gene product 9.5 (PGP, general neural marker) revealed that the most numerous PGP-positive nerve fibres were found in the mesenchyme of the uterovaginal canal height.

View Article and Find Full Text PDF

The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes.

View Article and Find Full Text PDF

Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.

Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!