Selection on codon bias in yeast: a transcriptional hypothesis.

Nucleic Acids Res

Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.

Published: November 2013

Codons that code for the same amino acid are often used with unequal frequencies. This phenomenon is termed codon bias. Here, we report a computational analysis of codon bias in yeast using experimental and theoretical genome-wide data. We show that the most used codons in highly expressed genes can be predicted by mRNA structural data and that the codon choice at each synonymous site within an mRNA is not random with respect to the local secondary structure. Because we also found that the folding stability of intron sequences is strongly correlated with codon bias and mRNA level, our results suggest that codon bias is linked to mRNA folding structure through a mechanism that, at least partially, operates before pre-mRNA splicing. Consistent with this, we report evidence supporting the adaptation of the tRNA pool to the codon profile of the most expressed genes rather than vice versa. We show that the correlation of codon usage with the gene expression level also includes the stop codons that are normally not decoded by aminoacyl-tRNAs. The results reported here are consistent with a role for transcriptional forces in driving codon usage bias via a mechanism that improves gene expression by optimizing mRNA folding structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814355PMC
http://dx.doi.org/10.1093/nar/gkt740DOI Listing

Publication Analysis

Top Keywords

codon bias
20
bias yeast
8
codon
8
expressed genes
8
mrna folding
8
codon usage
8
gene expression
8
bias
6
mrna
5
selection codon
4

Similar Publications

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

Article Synopsis
  • The tRNA epitranscriptome plays a crucial role in regulating mRNA translation, but our understanding of its tissue-specific functions is limited.
  • Analyzing seven mouse tissues revealed unique patterns of tRNA modifications, with queuosine (Q) being prominent in the brain and mitochondrial modifications in the heart.
  • By testing a codon-mutated EGFP, researchers found that protein levels varied based on tissue type, highlighting the potential for tailoring gene therapies to enhance their effectiveness in specific tissues or conditions.
View Article and Find Full Text PDF

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!