Dendritic mechanisms contribute to stimulus-specific adaptation in an insect neuron.

J Neurophysiol

Department of Biology, College of Charleston, Charleston, South Carolina; and.

Published: November 2013

AI Article Synopsis

Article Abstract

Reduced neuronal activation to repetitive stimulation is a common feature of information processing in nervous systems. Such stimulus-specific adaptation (SSA) occurs in many systems, but the underlying neural mechanisms are not well understood. The Neoconocephalus (Orthoptera, Tettigoniidae) TN-1 auditory neuron exhibits an SSA-like process, characterized by reliably detecting deviant pulses after response cessation to common standard pulses. Therefore, TN-1 provides a model system to study the cellular mechanisms underlying SSA with an identified neuron. Here we test the hypothesis that dendritic mechanisms underlie TN-1 response cessation to fast-pulse rate repeated signals. Electrically stimulating TN-1 with either high-rate or continuous-current pulses resulted in a decreased ability in TN-1 to generate action potentials but failed to elicit cessation of spiking activity as observed with acoustic stimulation. BAPTA injection into TN-1 delayed the onset of response cessation to fast-pulse rate acoustic stimuli in TN-1 but did not eliminate it. These results indicate that calcium-mediated processes contribute to the fast cessation of spiking activity in TN-1 but are insufficient to cause spike cessation on its own. Replacing normal saline with low-Na(+) saline (replacing sodium chloride with either lithium chloride or choline chloride) eliminated response cessation, and TN-1 no longer responded selectively to the deviant pulses. Sodium-mediated potassium channels are the most likely candidates underlying sodium-mediated response suppression in TN-1, triggered by Na(+) influx in dendritic regions activated by acoustic stimuli. On the basis of these results, we present a model for a cellular mechanism for SSA in a single auditory neuron.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841924PMC
http://dx.doi.org/10.1152/jn.00057.2013DOI Listing

Publication Analysis

Top Keywords

response cessation
16
tn-1
10
dendritic mechanisms
8
stimulus-specific adaptation
8
auditory neuron
8
deviant pulses
8
cessation fast-pulse
8
fast-pulse rate
8
cessation spiking
8
spiking activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!