The past decade has witnessed intense research activity in the area of Fe(II) spin crossover coordination polymers, which are structurally diverse and functionally intriguing materials. In this endeavor, a less exploited series of ligands have been selected among various N-donor triazole and tetrazole molecules. Developing conventions that allow the tailoring of such functional materials with predictable architecture and properties is an important objective and current interest in crystal engineering. However, detailed knowledge on the structure-property correlation is still scanty due to the small number of crystal structures of such compounds. The principal focus is to decipher the effect of various supramolecular factors such as intermolecular interactions, hydrogen bonding etc., on the resultant Fe(II) coordination polymers. This tutorial review aims at highlighting some of the developments of such structurally diverse and functionally intriguing 1D polymeric chains, 2D and 3D networks built from triazole or tetrazole ligands exhibiting fascinating spin crossover phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2013.411 | DOI Listing |
Inorg Chem
January 2025
School of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia.
A search for switchable molecules has afforded a family of cobalt complexes featuring derivatives of 2-aminophenol: 4,6-di--butyl aminophenol (HL) and 2-anilino-4,6-di--butyl aminophenol (HL). The heteroleptic cobalt complexes incorporate a Metpa ligand (tpa = tris(2-pyridylmethyl)amine; = 0-3), which involves the methylation of the 6-position of the pyridine ring). Eight members of this family have been synthesized and characterized: [Co(HL)(tpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(tpa)] (BPh)(ClO) (), [Co(L)(tpa)](BPh)(ClO) () and [Co(HL)(Metpa)](BPh) (), where the aminophenol-derived ligands are monoanionic in either the open shell radical iminosemiquinonate (L) or the closed shell protonated aminophenolate (HL).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Nature
January 2025
Max-Planck-Institut für Quantenoptik, Garching, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!