RYMV2 is a major recessive resistance gene identified in cultivated African rice (Oryza glaberrima) which confers high resistance to the Rice yellow mottle virus (RYMV). We mapped RYMV2 in an approximately 30-kb interval in which four genes have been annotated. Sequencing of the candidate region in the resistant Tog7291 accession revealed a single mutation affecting a predicted gene, as compared with the RYMV-susceptible O. glaberrima CG14 reference sequence. This mutation was found to be a one-base deletion leading to a truncated and probably nonfunctional protein. It affected a gene homologous to the Arabidopsis thaliana CPR5 gene, known to be a defense mechanism regulator. Only seven O. glaberrima accessions showing this deletion were identified in a collection consisting of 417 accessions from three rice species. All seven accessions were resistant to RYMV, which is an additional argument in favor of the involvement of the deletion in resistance. In addition, fine mapping of a resistance quantitative trait locus in O. sativa advanced backcrossed lines pinpointed a 151-kb interval containing RYMV2, suggesting that allelic variants of the same gene may control both high and partial resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-05-13-0127-RDOI Listing

Publication Analysis

Top Keywords

recessive resistance
8
resistance rice
8
rice yellow
8
yellow mottle
8
mottle virus
8
cpr5 gene
8
gene
6
rice
5
resistance
5
virus associated
4

Similar Publications

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Exon location of glycine substitutions impacts kidney survival in autosomal dominant Alport Syndrome.

Nephrol Dial Transplant

January 2025

Department of Nephrology, Kidney Transplantation and Dialysis, CHU Lille, University of Lille, Lille, France.

Background And Hypothesis: Unlike X-linked or autosomal recessive Alport Syndrome, no clear genotype/phenotype correlation has yet been demonstrated in patients carrying a single variant of COL4A3 or COL4A4.

Methods: We carried out a multicenter retrospective study to assess the risk factors involved in renal survival in patients presenting a single pathogenic variant on COL4A3 or COL4A4.

Results: 97 patients presenting a single pathogenic variant of COL4A3 or COL4A4 were included.

View Article and Find Full Text PDF

Coenzyme Q2 (CoQ2) mutations are a group of autosomal recessive mitochondria-linked diseases that result in coenzyme Q10 (CoQ10) deficiency (CoQ10: a cofactor in mitochondrial energy production). Its deficiency leads to multiple systemic clinical presentations; however, isolated steroid-resistant nephrotic syndrome (SRNS) is considerably rare. Multiple genetic mutations have been reported with different ranges of severity and prognosis, with variable responses to CoQ10 supplementation.

View Article and Find Full Text PDF

Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.

View Article and Find Full Text PDF

Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.).

Theor Appl Genet

January 2025

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!