Background: The deviation of continuous subcutaneous glucose monitoring (CGM) data from reference blood glucose measurements is substantial, and adequate signal processing is required to reduce the discrepancy between subcutaneous glucose and blood glucose values. The purpose of this study was to develop a multistep algorithm for the processing and calibration of continuous subcutaneous glucose monitoring data with high accuracy and short delay. Algorithm

Presentation: The algorithm comprises three steps: rate-limiting filtering, selective smoothing, and robust calibration. Initially, the algorithm detects nonphysiological glucose rate-of-change and corrects it with a weighted local polynomial. Noisy signal parts that require smoothing are then detected based on zero crossing count of the sensor signal first-order differences, and an exponentially weighted moving average smooths the noisy parts of the signal afterward. Finally, calibration is performed using a first-order polynomial as the conversion function, with coefficients being estimated using robust regression with a bi-square weight function. ALGORITHM PERFORMANCE: The performance of the algorithm was evaluated on 16 patients with type 1 diabetes mellitus. To compare the algorithm with state-of-the-art CGM data denoising and calibration, the rate-limiting filter and selective smoothing were replaced with an adaptive Kalman filter, and the calibration method was replaced with the calibration algorithm presented in one of the Medtronic (Northridge, CA) CGM patents. The median (mean) of the absolute relative deviation (ARD) of the sensor glucose values processed by the newly developed algorithm from capillary reference blood glucose measurements was 14.8% (22.6%), 10.6% (14.6%), and 8.9% (11.7%) in hypoglycemia, euglycemia, and hyperglycemia, respectively, whereas for the alternative algorithm, the median (mean) was 22.2% (26.9%), 12.1% (15.9%), and 8.8 (11.3%), respectively. The median (mean) ARD in all ranges was 10.3% (14.7%) for the new algorithm and 11.5% (15.8%) for the alternative algorithm. The new algorithm had an average delay of 2.1 min across the patients, and the alternative algorithm had an average delay of 2.9 min.

Conclusions: The presented algorithm may increase the accuracy of CGM data.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dia.2013.0041DOI Listing

Publication Analysis

Top Keywords

algorithm
14
glucose monitoring
12
subcutaneous glucose
12
cgm data
12
blood glucose
12
alternative algorithm
12
glucose
9
multistep algorithm
8
algorithm processing
8
processing calibration
8

Similar Publications

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!