Two novel porphyrin-porphyrin dyads, the symmetrical Zn[Porph]-Zn[Porph] (2) and unsymmetrical Zn[Porph]-H2[Porph] (4), where Zn[Porph] and H2[Porph] are the metalated and free-base forms of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, respectively, in which two porphyrin units are covalently bridged by 1,3,5-triazine, have been synthesized via the stepwise amination of cyanuric chloride. The dyads are also functionalized by a terminal carboxylic acid group of a glycine moiety attached to the triazine group. Photophysical measurements of 2 and 4 showed broaden and strengthened absorptions in their visible spectra, while electrochemistry experiments and density functional theory calculations revealed negligible interaction between the two porphyrin units in their ground states but appropriate frontier orbital energy levels for use in dye-sensitized solar cells (DSSCs). The 2- and 4-based solar cells have been fabricated and found to exhibit power conversion efficiencies (PCEs) of 3.61% and 4.46%, respectively (under an illumination intensity of 100 mW/cm(2) with TiO2 films of 10 μm thickness). The higher PCE value of the 4-based DSSC, as revealed by photovoltaic measurements (J-V curves) and incident photon-to-current conversion efficiency (IPCE) spectra of the two cells, is attributed to its enhanced short-circuit current (J(sc)) under illumination, high open-circuit voltage (V(oc)), and fill factor (FF) values. Electrochemical impedance spectra demonstrated shorter electron-transport time (τd), longer electron lifetime (τe), and high charge recombination resistance for the 4-based cell, as well as larger dye loading onto TiO2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic400774p | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
Recent progress in inverted perovskite solar cells (IPSCs) mainly focused on NiO modification and perovskite (PVK) regulation to enhance efficiency and stability. However, most works address only monofunctional modifications, and identical molecules with the ability to simultaneously optimize NiO interface and perovskite bulk phase have been rarely reported. This work proposes a dual modification approach using 4-amino-3,5-dichlorobenzotrifluoride (DCTM) to optimize both NiO upper interfaces and reduction of bulk defects in perovskite.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!