Optical mechanical analogy and Hamiltonization of a nonholonomic system.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Oakland University, Rochester, Michigan 48309, USA.

Published: July 2013

It is well known that there is an analogy between optics and mechanics that prompted much of the classical theory of mechanics and indeed extended it to the theory of quantum mechanics. We develop here an optical mechanical analogy for a prototypical nonholonomic mechanical system, a knife edge moving on a plane under the influence of a potential. We show that this approach is related to but different from the classical theory of Hamiltonization of nonholonomic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.88.013204DOI Listing

Publication Analysis

Top Keywords

optical mechanical
8
mechanical analogy
8
hamiltonization nonholonomic
8
classical theory
8
analogy hamiltonization
4
nonholonomic system
4
system well
4
well analogy
4
analogy optics
4
optics mechanics
4

Similar Publications

Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.

View Article and Find Full Text PDF

Acoustoplasmonic resonators, such as nanobars and crosses, are efficient acousto-optical transducers. The excitation of mechanical modes in these structures strongly depends on the spatial profile of the eigenmodes of the resonator. Using a system of two identical gold elongated bars placed on a silicon dioxide substrate, we examine how breaking mirror symmetries affects the optical and acoustic properties to provide insights in the design of acoustoplasmonic metasurfaces for nonsymmetric acousto-optical transducers.

View Article and Find Full Text PDF

Why do patients with isolated PCL rupture experience no subjective knee joint instability during walking? An biomechanical study.

Front Bioeng Biotechnol

January 2025

Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical Universit, Guangzhou, China.

Objective: The aim of this study is to assess the kinematic changes in the knee joint during walking in patients with isolated PCL-deficiency (PCLD) to determine the presence of walking-related joint instability (mechanical instability-abnormal displacement form structural damage). Additionally, the study seeks to provide biomechanical insights into the observed differences between subjective and objective assessments.

Methods: 35 healthy volunteers and 27 patients with isolated PCLD (both involved and uninvolved sides) were included in the study.

View Article and Find Full Text PDF

Purpose: Biodiesel is a non-toxic, renewable, and environmentally friendly fuel used in compression ignition engines. This work aimed to develop FeO/SiO as a cheap, magnetic, and easy separable catalyst for biodiesel production from waste oil by sono-catalytic transesterification.

Methods: Fe₃O₄-SiO₂ was prepared using a modified Stober method and used as a heterogeneous catalyst in an ultrasound-assisted transesterification reaction to produce biodiesel.

View Article and Find Full Text PDF

Flexible Eyelid Pressure and Motion Dual-Mode Sensor Using Electric Breakdown-Induced Piezoresistivity and Electrical Potential Sensing.

ACS Appl Mater Interfaces

January 2025

Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China.

Multiple ocular surface disorders are associated with the mechanical properties of the interface between the eyelid and cornea. Determining eyelid pressure is vital for diagnosing and preventing these disorders. However, current measurements rely on flat piezoresistive pressure sensor arrays that lack eye-motion sensing capabilities, resulting in discomfort and measurement inaccuracies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!