Spontaneous neural activity has been increasingly recognized as a subject of key relevance in neuroscience. It exhibits nontrivial spatiotemporal structure reflecting the organization of the underlying neural network and has proved to be closely intertwined with stimulus-induced activity patterns. As an additional contribution in this regard, we report computational studies that strongly suggest that a stimulus-free feature rules the behavior of an important psychophysical measure of the sensibility of a sensory system to a stimulus, the so-called dynamic range. Indeed in this paper we show that the entropy of the distribution of avalanche lifetimes (information efficiency, since it can be interpreted as the efficiency of the network seen as a communication channel) always accompanies the dynamic range in the benchmark model for sensory systems. Specifically, by simulating the Kinouchi-Copelli (KC) model on two broad families of model networks, we generically observed that both quantities always increase or decrease together as functions of the average branching ratio (the control parameter of the KC model) and that the information efficiency typically exhibits critical optimization jointly with the dynamic range (i.e., both quantities are optimized at the same value of that control parameter, that turns out to be the critical point of a nonequilibrium phase transition). In contrast with the practice of taking power laws to identify critical points in most studies describing measured neuronal avalanches, we rely on data collapses as more robust signatures of criticality to claim that critical optimization may happen even when the distribution of avalanche lifetimes is not a power law, as suggested by a recent experiment. Finally, we note that the entropy of the size distribution of avalanches (information capacity) does not always follow the dynamic range and the information efficiency when they are critically optimized, despite being more widely used than the latter to describe the computational capabilities of a neural network. This strongly suggests that dynamical rules allowing a proper temporal matching of the states of the interacting neurons is the key for achieving good performance in information processing, rather than increasing the number of available units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.012712 | DOI Listing |
Sci Rep
December 2024
Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFSci Rep
December 2024
Gateway Antarctica, University of Canterbury, Christchurch, New Zealand.
The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Management and Toxicology, Michael Okpara University of Agriculture, Umudike, Nigeria.
The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.
View Article and Find Full Text PDFNat Commun
December 2024
Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!