Fluctuations in the coil-stretch transition of flexible polymers in good solvents: a peak due to nonlinear force relation.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, New York 12180, USA.

Published: July 2013

Long flexible polymers undergo a coil to stretch transition (CST) in an elongational flow. Near the CST, a peak can be observed in the fluctuations of the size of a molecule (|R|). Solvent effects on the fluctuations are studied using Brownian dynamics simulations of a nonlinear spring force relation that can represent real molecules. Ignoring the influence of hydrodynamic interactions, a linear region in the spring force relation is known to cause the peak in |R| fluctuations. In contrast, we find that a peak in the fluctuations can be obtained even for the nonlinear spring force relation. We analyze the influence of hydrodynamic interactions on the fluctuations using a dumbbell model with a conformation-dependent drag coefficient.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.88.012606DOI Listing

Publication Analysis

Top Keywords

force relation
16
spring force
12
flexible polymers
8
nonlinear spring
8
influence hydrodynamic
8
hydrodynamic interactions
8
fluctuations
6
fluctuations coil-stretch
4
coil-stretch transition
4
transition flexible
4

Similar Publications

With 25% of teenagers pregnant by age of 19 and about half of these married before their 18th birth day, Uganda exhibits one of the highest rates of teenage pregnancy and child marriage globally. Comprehensive data on the drivers and barriers to addressing repeat teenage pregnancies and early child marriages remains limited. Using the narrative inquiry approach, the paper explores the key socio-cultural drivers and barriers to addressing repeat teenage pregnancies and early/forced marriages among stakeholders in the districts of Mbale, Kween, Namayingo and Kalangala.

View Article and Find Full Text PDF

Identification and Analysis of the Plasma Membrane H-ATPase Gene Family in Cotton and Its Roles in Response to Salt Stress.

Plants (Basel)

December 2024

Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China.

Plant plasma membrane (PM) H-ATPase functions as a proton-motive force by exporting cellular protons to establish a transmembrane chemical gradient of H ions and an accompanying electrical gradient. These gradients are crucial for plant growth and development and for plant responses to abiotic and biotic stresses. In this study, a comprehensive identification of the PM H-ATPase gene family was conducted across four cotton species.

View Article and Find Full Text PDF

Recent Advances in Micro- and Nanorobot-Assisted Colorimetric and Fluorescence Platforms for Biosensing Applications.

Micromachines (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility.

View Article and Find Full Text PDF

The effects of aging treatment and the volume fraction of precipitation particles on the nano-hardness and nano-indentation morphology of Ni-based single crystal superalloys are systematically investigated. Using nano-indentation tests and atomic force microscopy (AFM), this study examined the mechanical properties and related physical mechanisms of Ni-based superalloys that have two volume fractions of precipitation particles and four aging treatment times. Results analyzed using the Oliver-Pharr method indicate that prolonging the aging time or increasing the volume fraction of particles enhances the nano-hardness and creep resistance of Ni-based single crystal superalloys and reduces the indentation-affected area.

View Article and Find Full Text PDF

Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!