We report a numerical study of a simple, modified Asakura-Oosawa model for nanoparticles that are isotropically grafted with polymer chains. We perform canonical and grand-canonical Monte Carlo simulations to establish a qualitative morphology diagram, as well as quantitative phase diagrams. The morphology diagram qualitatively reproduces experimental observations and theoretical approaches employing more complex models. In addition, we establish the transition lines for a microphase separation and show that the phase behavior saturates for larger polymer sizes. An analytical treatment on the level of the second virial coefficient indicates that this saturation effect is caused by less effective shielding of nanoparticles by longer polymers. Our simple model enables large-scale particle-based simulations of self-assembly of polymer-coated particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.012303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!