Is fibroblast growth factor receptor 4 a suitable target of cancer therapy?

Curr Pharm Des

Institute of Cancer Research, Department of Medicine 1, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.

Published: September 2015

Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453246PMC
http://dx.doi.org/10.2174/13816128113199990594DOI Listing

Publication Analysis

Top Keywords

cancer therapy
12
fibroblast growth
8
differs fgfrs1-3
8
cancer
5
fgfr4
5
growth factor
4
factor receptor
4
receptor suitable
4
suitable target
4
target cancer
4

Similar Publications

Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma.

Biomed Pharmacother

December 2024

Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea. Electronic address:

Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1.

View Article and Find Full Text PDF

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

CCL3 as a novel biomarker in the diagnosis of necrotizing enterocolitis.

BMC Pediatr

December 2024

Department of Clinical Laboratory, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, NO 136 Zhongshaner Road, Yuzhong Distrit, Chongqing, 400014, China.

Objectives: Neonatal necrotizing enterocolitis (NEC) is a common intestinal disease that threatens the lives of newborns and is characterized by ischemic necrosis of the small intestine and colon. As early diagnosis of NEC improves prognosis, the identification of new or complementary biomarkers is of great importance. In this study, we evaluate the diagnostic value of CCL3 in NEC and compare its effectiveness with other commonly used biomarkers, such as procalcitonin (PCT) and C-reactive protein (CRP).

View Article and Find Full Text PDF

Cellular senescence offers distinct immunological vulnerabilities in cancer.

Trends Cancer

December 2024

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:

Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.

View Article and Find Full Text PDF

Emergence of Circulating Tumor DNA as a Precision Biomarker in Lung Cancer Radiation Oncology and Beyond.

Hematol Oncol Clin North Am

December 2024

Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Electronic address:

Circulating tumor DNA (ctDNA) is emerging as a transformative biomarker in the management of non-small cell lung cancer (NSCLC). This review focuses on its role in detecting minimal residual disease (MRD), predicting treatment response, and guiding therapeutic decision-making in radiation oncology and immunotherapy. Key studies demonstrate ctDNA's prognostic value, particularly in identifying relapse risk and refining patient stratification for curative-intent and consolidative treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!