This article describes a straightforward and simple synthesis of ionically tagged water-soluble Eu(3+) and Tb(3+) complexes (with ionophilic ligands) applied for bioimaging of invasive mammal cancer cells (MDA-MB-231). Use of the task-specific ionic liquid 1-methyl-3-carboxymethyl-imidazolium chloride (MAI·Cl) as the ionophilic ligand (ionically tagged) proved to be a simple, elegant, and efficient strategy to obtain highly fluorescent water-soluble Eu(3+) (EuMAI) and Tb(3+) (TbMAI) complexes. TbMAI showed an intense bright green fluorescence emission selectively staining endoplasmic reticulum of MDA-MB-231 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic4017678DOI Listing

Publication Analysis

Top Keywords

ionically tagged
12
complexes ionophilic
8
water-soluble eu3+
8
water-soluble tb3+
4
tb3+ eu3+
4
eu3+ complexes
4
ionophilic ionically
4
tagged ligands
4
ligands fluorescence
4
fluorescence imaging
4

Similar Publications

Ion Spectroscopy in the Context of the Diffuse Interstellar Bands: A Case Study with the Phenylacetylene Cation.

ACS Earth Space Chem

December 2024

School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, King's Buildings, Edinburgh EH9 3FJ, Scotland, U.K.

Identification of the molecular carriers of diffuse interstellar bands (DIBs) requires gas phase electronic spectra of suitable candidate structures. Recording the spectra of these in the laboratory is challenging because they include large, carbon-rich molecules, many of which are likely to be ionic. The electronic spectra of ions are often obtained using action spectroscopy methods, which can induce small perturbations to the absorption characteristics and hinder comparison with astronomical observations.

View Article and Find Full Text PDF

This study focuses on a novel lipase from Bacillus licheniformis IBRL-CHS2. The lipase gene was cloned into the pGEM-T Easy vector, and its sequences were registered in GenBank (KU984433 and AOT80658). It was identified as a member of the bacterial lipase subfamily 1.

View Article and Find Full Text PDF

Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment.

ACS Biomater Sci Eng

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and -ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol.

View Article and Find Full Text PDF

Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts.

View Article and Find Full Text PDF

In this study, we developed a method for the on-site selective detection and quantification of microplastics in various water matrices using fluorescence-tagged peptides combined with electrochemical impedance spectroscopy (EIS). Among the types of plastics found in seawater, polystyrene (PS) microplastics were selected. Fluorometry, scanning electron microscopy (SEM), and Raman spectroscopy were used to verify the specific interaction of these peptides with PS spherical particles of different sizes (ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!