Objective: To investigate whether adding ethanolic extracts of propolis (EEP) might influence the antibacterial and mechanical (shear-peel band strength [SPBS]) properties of conventional glass ionomer cement (GIC) used in orthodontic band cementation.
Materials And Methods: The cement was divided into four groups: one using the original composition and three with 10%, 25%, and 50% EEP added to the liquid and then manipulated. An antimicrobial assay, broth-dilution method was used to determine the antibacterial capacity of the GIC containing EEP. Eighty teeth were used for the mechanical assay, and an Instron testing machine was used to evaluate the SPBS. Kolmogorov-Smirnov and Kruskal-Wallis tests were used for statistical analyses.
Results: GIC with the addition of 25% and 50% EEP activated inhibition of Streptococcus mutans (ATCC 25175) growth, but this effect did not occur in the group to which 10% EEP was added or in the control GIC group. There was no significant difference between the groups in terms of SPBS (P > .05).
Conclusions: The addition of EEP may increase antibacterial properties without negatively modifying the mechanical properties of conventional GIC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673796 | PMC |
http://dx.doi.org/10.2319/020413-101.1 | DOI Listing |
Int J Mol Sci
December 2024
Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
In this study, a novel Cu-bearing 304 stainless steel doped with 4.0 wt.% Cu (304-Cu SS) was developed, and the effects of nitrogen microalloying (304N-Cu SS) and heat treatment on mechanical, antibacterial, and corrosion properties were investigated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.
View Article and Find Full Text PDFMolecules
January 2025
Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland.
Cationic gemini surfactants are used due to their broad spectrum of activity, especially surface, anticorrosive and antimicrobial properties. Mixtures of cationic and anionic surfactants are also increasingly described. In order to investigate the effect of anionic additive on antimicrobial activity, experimental studies were carried out to obtain MIC (minimal inhibitory concentration) against and bacteria.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:
Traditional wound dressings, primarily centered on antimicrobial or bactericidal strategies, have inadvertently contributed to the rise of drug-resistant bacterial colonies at wound sites, thus prolonging the healing process. In this study, we developed an innovative hydrogel dressing, CMCS-PVA@CA, incorporating carboxymethyl chitosan (CMCS), polyvinyl alcohol (PVA), and cichoric acid (CA), specifically designed to treat skin wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). Computational biology analyses reveal that CA exerts substantial anti-virulence activity by targeting serine/threonine phosphatase (Stp1), achieving an IC of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!