This paper put forward a more accurate identification method for identification of Chinese materia medica (CMM), the systematic identification of Chinese materia medica (SICMM) , which might solve difficulties in CMM identification used the ordinary traditional ways. Concepts, mechanisms and methods of SICMM were systematically introduced and possibility was proved by experiments. The establishment of SICMM will solve problems in identification of Chinese materia medica not only in phenotypic characters like the mnorphous, microstructure, chemical constituents, but also further discovery evolution and classification of species, subspecies and population in medical plants. The establishment of SICMM will improve the development of identification of CMM and create a more extensive study space.
Download full-text PDF |
Source |
---|
Org Biomol Chem
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
A 6-step gram-scale synthesis of the fungal polyketide (±)-gregatin A is described. The synthetic route features an intermolecular 1,3-dipolar cycloaddition, a Mo-mediated disconnection of the isoxazole skeleton, and an acid-mediated deprotection/enamine hydrolysis and hemiketalization cascade.
View Article and Find Full Text PDFJ Nat Med
January 2025
Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
Non-Hodgkin lymphomas (NHL), including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and follicular lymphoma (FL), predominantly arise from B cells undergoing germinal center (GC) reactions. The transcriptional repressor B-cell lymphoma 6 (BCL6) is indispensable for GC formation and contributes to lymphomagenesis via its BTB domain-mediated suppression of target genes. Dysregulation of BCL6 underpins the pathogenesis of GC-derived NHL.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
The efficacy of cancer immunotherapy relies on a sufficient amount of functional immune cells. Triple-negative breast cancer lacks enough immune cell infiltration, and adjuvant therapy is necessary to prime anti-tumor immunity. However, the improvement in efficacy is unsatisfactory with concern about inducing systemic immunotoxicity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China. Electronic address:
Diabetic nephropathy (DN) is a major complication of diabetes and a leading cause of renal failure. While valsartan has been shown to alleviate DN clinically, its antifibrotic mechanisms require further investigation. This study used a transcriptomics-driven approach, integrating in vitro, Machine Learning, molecular docking, dynamics simulations and RT-qCPR to identify key antifibrotic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!