Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To prepare quercetin nanostuctured lipid carriers (QT-NLC), and detect their physicochemical properties.
Method: QT-NLC was prepared by emulsification ultrasonic dispersion method, and the optimum prescription was screened out by orthogonal design. Transmission electron microscope was used to observe QT-NLC morphology. Granulometer was applied to determine zeta potential, particle size and distribution. DSC was adopted for phase analysis. Centrifugal ultra-filtration method was used to determine entrapment efficiency. Dialysis method was adopted to detect drug release in vitro of preparations.
Result: QT-NLC prepared under optimum conditions was mostly spherical grains, with the average particle size of (175 +/- 25) nm, which were distributed evenly, and zeta potential was (-23 +/- 0.3) mV. DSC results indicated that the drug was dispersed in nano-particles in a non-crystalline state, with an entrapment efficiency of (95.43 +/- 0.23)% and a drug-loading capacity of (2.38 +/- 0.24)%. The in vitro drug release was 32.2% in 2 hours, which was followed by a sustained release.
Conclusion: Emulsification ultrasonic dispersion method is applicable for preparing QT-NLC, as nano-particles are distributed evenly, with good reliability. This processing technology is safe, reliable and highly reproducible.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!