3.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=23943875&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b49083.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=plasma+membrane&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b49083.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a2cba488ce2ae005fe4&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Ca²⁺ and calpain control membrane expansion during the rapid cell spreading of neutrophils. | LitMetric

Ca²⁺ and calpain control membrane expansion during the rapid cell spreading of neutrophils.

J Cell Sci

Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, Schools of Medicine and Dentistry Cardiff University, Heath Park, Cardiff CF14 4XN, UK.

Published: October 2013

Following adherence of neutrophils to the endothelium, neutrophils undergo a major morphological change that is a necessary prelude to their extravasation. We show here that this shape change is triggered by an elevation of cytosolic inositol (1,4,5)-trisphosphate (IP3), to provoke physiological Ca(2+) influx through a store-operated mechanism. This transition from a spherical to 'flattened' neutrophil morphology is rapid (∼100 seconds) and is accompanied by an apparent rapid expansion of the area of the plasma membrane. However, no new membrane is added into the plasma membrane. Pharmacological inhibition of calpain-activation, which is triggered by Ca(2+) influx during neutrophil spreading, prevents normal cell flattening. In calpain-suppressed cells, an aberrant form of cell spreading can occur where an uncoordinated and localised expansion of the plasma membrane is evident. These data show that rapid neutrophil spreading is triggered by Ca(2+) influx, which causes activation of calpain and release of furled plasma membrane to allow its apparent 'expansion'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795336PMC
http://dx.doi.org/10.1242/jcs.124917DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
ca2+ influx
12
cell spreading
8
triggered ca2+
8
neutrophil spreading
8
membrane
6
ca²⁺ calpain
4
calpain control
4
control membrane
4
membrane expansion
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!