Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Stable carbon isotope ratios of dissolved inorganic (DIC) and organic carbon (DOC) are of particular interest in aquatic geochemistry. The precision for this type of analysis is typically reported in the range of 0.1‰ to 0.5‰. However, there is no published attempt that compares δ(13)C measurements of DIC and DOC among different laboratories for natural water samples.
Methods: Five natural water samples (lake water, seawater, two geothermal waters, and petroleum well water) were analyzed for δ(13)CDIC and δ(13)CDOC values by five laboratories with isotope ratio mass spectrometry (IRMS) in an international proficiency test.
Results: The reported δ(13)CDIC values for lake water and seawater showed fairly good agreement within a range of about 1‰, whereas geothermal and petroleum waters were characterized by much larger differences (up to 6.6‰ between laboratories). δ(13)CDOC values were only comparable for seawater and showed differences of 10 to 21‰ for other samples.
Conclusions: This study indicates that scatter in δ(13)CDIC isotope data can be in the range of several per mil for samples from extreme environments (geothermal waters) and may not yield reliable information with respect to dissolved carbon (petroleum wells). The analyses of lake water and seawater also revealed a larger than expected difference and researchers from various disciplines should be aware of this. Evaluation of analytical procedures of the participating laboratories indicated that the differences cannot be explained by analytical errors or different data normalization procedures and must be related to specific sample characteristics or secondary effects during sample storage and handling. Our results reveal the need for further research on sources of error and on method standardization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.6665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!