Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein-protein interactions associated with proteolytic processing and aggregation are integral to normal and pathological aspects of prion protein (PrP) biology. Characterization of these interactions requires the identification of amino acid residues involved. The FlAsH/tetracysteine (FlAsH/TC) tag is a small fluorescent tag amenable to insertion at internal sites in proteins. In this study, we used serial FlAsH/TC insertions (TC-scanning) as a probe to characterize sites of protein-protein interaction between PrP and other molecules. To explore this application in the context of substrate-protease interactions, we analyzed the effect of FlAsH/TC insertions on proteolysis of cellular prion protein (PrPsen) in in vitro reactions and generation of the C1 metabolic fragment of PrPsen in live neuroblastoma cells. The influence of FlAsH/TC insertion was evaluated by TC-scanning across the cleavage sites of each protease. The results showed that FlAsH/TC inhibited protease cleavage only within limited ranges of the cleavage sites, which varied from about one to six residues in width, depending on the protease, providing an estimate of the PrP residues interacting with each protease. TC-scanning was also used to probe a different type of protein-protein interaction: the conformational conversion of FlAsH-PrPsen to the prion disease-associated isoform, PrPres. PrP constructs with FlAsH/TC insertions at residues 90-96 but not 97-101 were converted to FlAsH-PrPres, identifying a boundary separating loosely versus compactly folded regions of PrPres. Our observations demonstrate that TC-scanning with the FlAsH/TC tag can be a versatile method for probing protein-protein interactions and folding processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079259 | PMC |
http://dx.doi.org/10.1002/cbic.201300255 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!