Using a phase field crystal model we study the structure and dynamics of a drop of colloidal suspension during evaporation of the solvent. We model an experimental system where contact line pinning of the drop on the substrate is non-existent. Under such carefully controlled conditions, evaporation of the drop produces an ordered or disordered arrangement of the colloidal residue depending only on the initial average density of solute and the drying rate. We obtain a non-equilibrium phase boundary showing amorphous and crystalline phases of single component and binary mixtures of colloidal particles in the density-drying rate plane. While single-component colloids order in the two-dimensional triangular lattice, a symmetric binary mixture of mutually repulsive particles can be ordered into three triangular sub-lattices in two dimensions. Two of them are occupied by the two species of particles with the third sub-lattice vacant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2013-13090-3 | DOI Listing |
Int J Biol Macromol
December 2024
Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:
J Colloid Interface Sci
December 2024
Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, GERMANY.
We study analytically the dynamics of an anisotropic particle subjected to different stochastic resetting schemes in two dimensions. The Brownian motion of shape-asymmetric particles in two dimensions results in anisotropic diffusion at short times, while the late-time transport is isotropic due to rotational diffusion. We show that the presence of orientational resetting promotes the anisotropy to late times.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
The application of upconversion nanoparticles (UCNPs) for cell and tissue analysis requires a comprehensive understanding of their interactions with biological entities to prevent toxicity or harmful effects. Whereas most studies focus on cancer cells, this work addresses non-cancerous cells with their regular in vitro physiology. Since it is generally accepted that surface chemistry largely determines biocompatibility in general and uptake of nanomaterials in particular, two bilayer surface coatings with different surface shielding properties have been studied: (i) a phospholipid bilayer membrane (PLM) and (ii) an amphiphilic polymer (AP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!