Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish.

Nat Commun

Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMS 3453 CNRS, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France.

Published: April 2014

Bcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs. Genetic and molecular studies in zebrafish indicate that Bcl-wav and the recently identified mitochondrial calcium uniporter (MCU) contribute to the formation of the notochord axis by controlling blastomere convergence and extension movements during gastrulation. Furthermore, we found that Bcl-wav controls intracellular Ca(2+) trafficking by acting on the mitochondrial voltage-dependent anion channel, and possibly on MCU, with direct consequences on actin microfilament dynamics and blastomere migration guidance. Thus, from an evolutionary point of view, the original function of Bcl-2 proteins might have been to contribute in controlling the global positioning system of blastomeres during gastrulation, a critical step in metazoan development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms3330DOI Listing

Publication Analysis

Top Keywords

mitochondrial calcium
8
calcium uniporter
8
bcl-2 proteins
8
bcl-wav
4
bcl-wav mitochondrial
4
uniporter drive
4
drive gastrula
4
gastrula morphogenesis
4
morphogenesis zebrafish
4
zebrafish bcl-2
4

Similar Publications

Amino acids are the basic structural units of life, and their intake levels affect disease and health. In the case of renal disease, alterations in amino acid metabolism can be used not only as a clinical indicator of renal disease but also as a therapeutic strategy. However, the biological roles and molecular mechanisms of natural chiral amino acids in human proximal tubular epithelial cells (HK-2) remain unclear.

View Article and Find Full Text PDF

Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the () gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT.

View Article and Find Full Text PDF

Cancer therapy-related cardiac dysfunction (CTRCD) has emerged as a significant concern with the rise of effective cancer treatments like anthracyclines and targeted therapies such as trastuzumab. While these therapies have improved cancer survival rates, their unintended cardiovascular side effects can lead to heart failure, cardiomyopathy, and arrhythmias. The pathophysiology of CTRCD involves oxidative stress, mitochondrial dysfunction, and calcium dysregulation, resulting in irreversible damage to cardiomyocytes.

View Article and Find Full Text PDF

Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons.

Biomolecules

December 2024

Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine.

The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells.

View Article and Find Full Text PDF

Urolithin A Protects Hepatocytes from Palmitic Acid-Induced ER Stress by Regulating Calcium Homeostasis in the MAM.

Biomolecules

November 2024

Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!