Incidence, mechanisms, and severity of match-related collegiate women's soccer injuries on FieldTurf and natural grass surfaces: a 5-year prospective study.

Am J Sports Med

Michael C. Meyers, FACSM, Department of Sport Science and Physical Education, Idaho State University, 921 South 8th Avenue, Stop 8105, Pocatello, ID 83209-8105.

Published: October 2013

Background: Numerous injuries have been attributed to playing on artificial turf. Over the past 2 decades, however, newer generations of synthetic turf have been developed to duplicate the playing characteristics of natural grass. Although synthetic turf has been determined to be safer than natural grass in some studies, few long-term studies have been conducted comparing match-related collegiate soccer injuries between the 2 playing surfaces.

Hypothesis: Collegiate female soccer athletes do not experience any difference in the incidence, mechanisms, and severity of match-related injuries on FieldTurf and on natural grass.

Study Design: Cohort study: Level of evidence, 2.

Methods: Female soccer athletes from 13 universities were evaluated over 5 competitive seasons for injury incidence, injury category, time of injury, injury time loss, player position, injury mechanism and situation, primary type of injury, injury grade and anatomic location, field location at the time of injury, injury severity, head and lower extremity trauma, cleat design, turf age, and environmental factors. In sum, 797 collegiate games were evaluated for match-related soccer injuries sustained on FieldTurf or natural grass during 5 seasons.

Results: Overall, 355 team games (44.5%) were played on FieldTurf versus 442 team games (55.5%) on natural grass. A total of 693 injuries were documented, with 272 (39.2%) occurring during play on FieldTurf and 421 (60.8%) on natural grass. Multivariate analysis per 10 team games indicated a significant playing surface effect: F₂,₆₉₀ = 6.435, P = .002, n-β = .904. A significantly lower total injury incidence rate (IIR) of 7.7 (95% confidence interval [CI], 7.2-8.1) versus 9.5 (95% CI, 9.3-9.7) (P = .0001) and lower rate of substantial injuries, 0.7 (95% CI, 0.5-1.0) versus 1.5 (95% CI, 1.2-1.9) (P = .001), were documented on FieldTurf versus natural grass, respectively. Analyses also indicated significantly less trauma on FieldTurf when comparing injury time loss, player position, injury grade, injuries under various field conditions and temperatures, cleat design, and turf age.

Conclusion: Although similarities existed between FieldTurf and natural grass during competitive match play, FieldTurf is a practical alternative when comparing injuries in collegiate women's soccer. It must be reiterated that the findings of this study may be generalizable to only collegiate competition and this specific artificial surface.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546513498994DOI Listing

Publication Analysis

Top Keywords

natural grass
32
fieldturf natural
16
soccer injuries
12
injury
12
injury injury
12
team games
12
injuries
9
fieldturf
9
natural
9
incidence mechanisms
8

Similar Publications

In order to solve the problems of high planting density, similar color, and serious occlusion between spikes in sorghum fields, such as difficult identification and detection of sorghum spikes, low accuracy and high false detection, and missed detection rates, this study proposes an improved sorghum spike detection method based on YOLOv8s. The method involves augmenting the information fusion capability of the YOLOv8 model's neck module by integrating the Gold feature pyramid module. Additionally, the SPPF module is refined with the LSKA attention mechanism to heighten focus on critical features.

View Article and Find Full Text PDF

Impact of Enzyme-Microbe Combined Fermentation on the Safety and Quality of Soy Paste Fermented with Grass Carp By-Products.

Foods

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Freshwater fish processing produces 30-70% nutrient-rich by-products, often discarded or undervalued. Grass carp by-products, rich in protein, offer potential as raw materials for fermented seasonings. This study explores the use of these by-products-specifically, minced fish and fish skin-in soybean fermentation to evaluate their effects on the quality of the resulting seasonings.

View Article and Find Full Text PDF

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

Sugarcane ( spp.) is globally considered an important crop for sugar and biofuel production. During sugarcane production, the heavy reliance on chemical nitrogen fertilizer has resulted in low nitrogen use efficiency (NUE) and high loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!