Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy.

Environ Health Perspect

Inserm, Institut Albert Bonniot (U823), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France.

Published: October 2013

Background: Maternal urinary biomarkers are often used to assess fetal exposure to phenols and their precursors. Their effectiveness as a measure of exposure in epidemiological studies depends on their variability during pregnancy and their ability to accurately predict fetal exposure.

Objectives: We assessed the relationship between urinary and amniotic fluid concentrations of nine environmental phenols, and the reproducibility of urinary concentrations, among pregnant women.

Methods: Seventy-one women referred for amniocentesis were included. Maternal urine was collected at the time of the amniocentesis appointment and on two subsequent occasions. Urine and amniotic fluid were analyzed for 2,4- and 2,5-dichlorophenols, bisphenol A, benzophenone-3, triclosan, and methyl-, ethyl-, propyl-, and butylparabens using online solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry.

Results: Only benzophenone-3 and propylparaben were detectable in more than half of the amniotic fluid samples; for these phenols, concentrations in amniotic fluid and maternal urine collected on the same day were positively correlated (ρ = 0.53 and 0.32, respectively). Other phenols were detected infrequently in amniotic fluid (e.g., bisphenol A was detected in only two samples). The intraclass correlation coefficients (ICCs) of urinary concentrations in samples from individual women ranged from 0.48 and 0.62 for all phenols except bisphenol A (ICC = 0.11).

Conclusion: Amniotic fluid detection frequencies for most phenols were low. The reproducibility of urine measures was poor for bisphenol A, but good for the other phenols. Although a single sample may provide a reasonable estimate of exposure for some phenols, collecting multiple urine samples during pregnancy is an option to reduce exposure measurement error in studies regarding the effects of phenol prenatal exposure on health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801458PMC
http://dx.doi.org/10.1289/ehp.1206335DOI Listing

Publication Analysis

Top Keywords

amniotic fluid
28
urinary concentrations
12
phenols
9
prenatal exposure
8
environmental phenols
8
phenols concentrations
8
concentrations amniotic
8
exposure phenols
8
maternal urine
8
urine collected
8

Similar Publications

Objective: This study aims to assess the diagnostic efficacy of a combined approach integrating chromosomal karyotyping, copy number variation sequencing (CNV-seq), and quantitative fluorescence polymerase chain reaction (QF-PCR) in detecting chromosomal abnormalities in high-risk pregnancies.

Methods: This retrospective study analyzed 617 high-risk pregnancies undergoing prenatal diagnosis from February 2023 to August 2024, with amniotic fluid samples concurrently analyzed using karyotyping, CNV-seq, and QF-PCR. We evaluated clinical characteristics, diagnostic yields, and inter-method concordance rates.

View Article and Find Full Text PDF

BACKGROUND Ureaplasma urealyticum (UU) is a common microorganism that has been associated with a variety of obstetric and neonatal complications, such as infertility, stillbirth, histologic chorioamnionitis, neonatal sepsis, respiratory infections, and central nervous system infections. However, it is rare for it to cause severe neonatal asphyxia. This rarity is the focus of our case report, which aims to highlight the potential severity of UU infections in newborns.

View Article and Find Full Text PDF

Microbial Pattern in Amniotic Fluid from Women with Premature Rupture of Membranes and Meconium-Stained Fluid.

Pharmaceuticals (Basel)

December 2024

Department of Clinical and Community Pharmacy, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia.

Intra-amniotic infection (IAI), also known as chorioamnionitis, is a major cause of maternal and neonatal infection that occurs during pregnancy, labor and delivery, or in the postpartum period. Conditions such as meconium-stained amniotic fluid (MSAF) and premature rupture of membranes (PROMs) are recognized risk factors for amniotic fluid infection. This study identifies the microbial patterns in the amniotic fluid of women with PROMs and MSAF to determine the presence and types of bacterial growth.

View Article and Find Full Text PDF

Expression of ABCB1, ABCC1, and LRP in Mesenchymal Stem Cells from Human Amniotic Fluid and Bone Marrow in Culture-Effects of In Vitro Osteogenic and Adipogenic Differentiation.

Int J Mol Sci

January 2025

Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.

View Article and Find Full Text PDF

Background/objectives: Preterm labor is a leading cause of neonatal morbidity and mortality worldwide. Previous research has indicated that an inflammatory response or microbial invasion of the amniotic cavity is a pathological condition linked to preterm birth; hence, inflammatory markers such as metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and interleukin-8 (IL-8) have been utilized to predict preterm delivery. The identification of reliable biomarkers for early prediction is critical for improving maternal, fetal, and neonatal outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!