Gene therapy approaches to prevent corneal graft rejection: where do we stand?

Ophthalmic Res

College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.

Published: March 2014

Cornea transplantation (penetrating keratoplasty) is the most frequently performed transplant procedure in humans. Despite advances in microsurgery and immunosuppressive treatment protocols, a significant number of corneal grafts still undergo immune-mediated allograft rejection. Topical treatment with corticosteroids is currently the gold standard and while this treatment is effective in many corneal transplant patients, it is much less effective in 'high-risk' patients with previous episodes of neovascularisation or graft rejection. Therefore, alternative approaches such as genetic modification of donor corneas are needed to prevent corneal transplant rejection. Cornea transplantation holds the unique advantage in that gene therapy can be used to modify allografts ex vivo prior to transplantation. Many preclinical studies using local (and systemic) gene transfer have been performed to date and many different gene transfer vehicles (gene therapy vectors) and therapeutic strategies (immunomodulatory or graft-protective) have been investigated to prevent corneal allograft rejection. The most recent gene therapy applications to prevent corneal allograft rejection will be reviewed in this article. Moreover, it will be discussed why the development of clinical trials for the genetic modification of corneal grafts prior to transplantation is lagging behind of those for the treatment of inherited retinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000350547DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
prevent corneal
16
allograft rejection
12
graft rejection
8
cornea transplantation
8
corneal grafts
8
corneal transplant
8
genetic modification
8
prior transplantation
8
gene transfer
8

Similar Publications

The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME).

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!