The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes. We fused a modified HP7 protein sequence to ApcEΔ, a water-soluble fragment of ApcE(1-240) obtained by excising a putative hydrophobic loop sequence of residues 77-153. HP7 was fused either to the N- or the C-terminus of ApcEΔ or inserted between residues 76 and 78, thereby replacing the native hydrophobic loop domain. We describe the assembly, spectral characteristics, and intramolecular excitation energy transfer of two unique systems: in the first, the short-wavelength absorbing zinc-mesoporphyrin is bound to the HP7 domain and serves as an excitation-energy donor to the long-wavelength absorbing phycocyanobilin bound to the ApcE domain; in the second, the short-wavelength absorbing phycoerythrobilin is bound to the ApcE domain and serves as an excitation energy donor to the long-wavelength absorbing zinc-bacteriochlorophyllide bound to the HP7 domain. All the systems that were constructed and tested exhibited significant intramolecular fluorescence resonance energy transfer with yields ranging from 21% to 50%. This confirms that our modular, covalent approach for studying EET between the cyclic and open chain tetrapyrroles is reasonable, and may be extended to larger structures mimicking light-harvesting in cyanobacteria. The design, construction, and characterization process demonstrated many of the advances in constructing such model systems, particularly in our ability to control the fold and aggregation state of protein-based systems. At the same time, it underlines the potential of exploiting the versatility and flexibility of protein-based systems in assembling multiple pigments into effective light-harvesting arrays and tuning the spectral properties of multichromophore systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja405617cDOI Listing

Publication Analysis

Top Keywords

excitation energy
16
energy transfer
16
intramolecular excitation
8
hydrophobic loop
8
short-wavelength absorbing
8
bound hp7
8
hp7 domain
8
domain serves
8
donor long-wavelength
8
long-wavelength absorbing
8

Similar Publications

Solvent influence on the optical absorption, frontier molecular orbitals, and electronic structure of 1-bromo adamantane.

J Mol Model

January 2025

Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.

Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.

View Article and Find Full Text PDF

Single-molecule Magnet Properties of Silole- and Stannole-ligated Erbium Cyclo-octatetraenyl Sandwich Complexes.

Chemistry

January 2025

University of Sussex, Department of Chemistry, School of Life Sciences, BN1 9QJ, Brighton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The synthesis, structures and magnetic properties of an η5-silole complex and an η5-stannole complex of erbium are reported. The sandwich complex anions [(η5-CpSi)Er(η8-COT)]- and [(η5-CpSn)Er(η8-COT)]-, where CpSi is [SiC4-2,5-(SiMe3)2-3,4-Ph2]2- (1Si), CpSn is [SnC4-2,5-(SiMe3)2-3,4-Me2]2- (1Sn) and COT = cyclo-octatetraenyl, were obtained as their [K(2.2.

View Article and Find Full Text PDF

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

When Photoelectrons Meet Gas Molecules: Determining the Role of Inelastic Scattering in Ambient Pressure X-ray Photoelectron Spectroscopy.

ACS Cent Sci

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Inelastic photoelectron scattering (IPES) by gas molecules, a critical phenomenon observed in ambient pressure X-ray photoelectron spectroscopy (APXPS), complicates spectral interpretation due to kinetic energy loss in the primary spectrum and the appearance of additional features at higher binding energies. In this study, we systematically investigate IPES in various gas environments using APXPS, providing detailed insights into interactions between photoelectrons emitted from solid surfaces and surrounding gas molecules. Core-level XPS spectra of Au, Ag, Zn, and Cu metals were recorded over a wide kinetic energy range in the presence of CO, N, Ar, and H gases, demonstrating the universal nature of IPES across different systems.

View Article and Find Full Text PDF

Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!