Hen lysozyme is an enzyme characterized by the presence of two domains whose relative motions are involved in the mechanism of binding and release of the substrates. By using residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations, we characterize the breathing motions describing the interdomain fluctuations of this protein. We found that the ensemble of conformations that we determined spans the entire range of structures of hen lysozyme deposited in the Protein Data Bank, including both the free and bound states, suggesting that the thermal motions in the free state provide access to the structures populated upon binding. The approach that we present illustrates how the use of residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations makes it possible to explore conformational fluctuations of a relatively large amplitude in proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi4007513DOI Listing

Publication Analysis

Top Keywords

hen lysozyme
12
residual dipolar
12
dipolar couplings
12
couplings replica-averaged
12
replica-averaged structural
12
structural restraints
12
restraints molecular
12
molecular dynamics
12
dynamics simulations
12
characterization interdomain
4

Similar Publications

The structure of His15 acetamide-modified hen egg-white lysozyme: a nice surprise from an old friend.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Chemistry `Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.

Hen egg-white lysozyme (HEWL) is a small polycationic protein which is highly soluble and stable. This has led to it becoming a `molecular laboratory' where chemical biological operations and structural techniques are tested. To date, HEWL accounts for 1233 PDB entries, roughly 0.

View Article and Find Full Text PDF

Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.

View Article and Find Full Text PDF

Engineering Protein Dynamics through Mutational Energy Landscape Traps.

J Chem Inf Model

January 2025

Laboratório de Genômica Aplicada e Bioinovações - Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil 21040-900.

Protein dynamics is essential for various biological processes, influencing functions such as enzyme activity, molecular recognition, and signal transduction. However, traditional protein engineering methods often focus on static structures, lacking tools to precisely manipulate dynamic behaviors. Here, we developed Mutational Energy Landscape Trap (MELT), a novel method designed to control protein dynamics by combining Normal Mode Analysis (NMA) and mutagenesis.

View Article and Find Full Text PDF

This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e.

View Article and Find Full Text PDF

The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!