Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

Inorg Chem

Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México.

Published: September 2013

The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic400703rDOI Listing

Publication Analysis

Top Keywords

pincer-type ligand
8
phosphinodibenzylsilane php{o-c6h4ch2sime2h}2
4
php{o-c6h4ch2sime2h}2 versatile
4
versatile "psi2hx"
4
"psi2hx" pincer-type
4
ligand ruthenium
4
ruthenium synthesis
4
synthesis phosphinodibenzylsilane
4
phosphinodibenzylsilane compound
4
compound php{o-c6h4ch2sime2h}2
4

Similar Publications

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand () that appears as a promising platform for filling this niche.

View Article and Find Full Text PDF

Employing a series of azo-aromatic pincer-type cobalt(II) complexes, -, and an imine-based cobalt complex, , a highly efficient catalytic protocol for the cycloaddition of CO with epoxides at low pressure of CO is reported. The electron-withdrawing group-substituted ligands containing complexes and were most efficient. The catalytic protocol with involved a synergistic participation of an azo-aromatic catalyst (0.

View Article and Find Full Text PDF

Sb-to-P Metathesis: A Direct Route to Structurally Constrained, Cationic P Compound.

Angew Chem Int Ed Engl

November 2024

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.

Structurally constrained, cationic P compound [LP][SbCl] with an OCO pincer-type ligand (L) having a central carbene donor was directly synthesized via an Sb-to-P metathesis reaction between PCl and LSb-Cl. [LP][SbCl] was isolated and its reactivity with small molecules (ROH and RNH) was studied, showing that [SbCl] is not an innocent counter anion, but an active participant in these reactions. When the [SbCl] was replaced with the [CBH] ([Cb]) anion, the reactions were redirected to [LP] cation only.

View Article and Find Full Text PDF

The formation of a rhodium pincer-type complex with a boron-based donor ligand and its reactivity are reported. The starting complex contains a formal borylene moiety, stabilised by two pyridine substituents. Quantum chemical investigations indicate the possibility of deprotonation of the central donor group of the type pyBH in this complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!