The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo.

PLoS One

Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.

Published: March 2014

EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737134PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071130PLOS

Publication Analysis

Top Keywords

expression mir-21
12
mir-21 target
12
ef24
11
expression
10
curcumin analog
8
targets nf-κb
8
potent anticancer
8
anticancer activity
8
vitro vivo
8
prostate cancer
8

Similar Publications

Urinary MicroRNA-21 for Prostate Cancer Detection Using a Silver Nanoparticle Sensor: A Promising Diagnostic Tool.

Biosensors (Basel)

December 2024

Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei City 10608, Taiwan.

In this study, we detected the expression levels of miR-21 in 38 clinical urine samples, obtained from 10 patients with PCa (with each sample obtained at three time points: before surgery, 1 month after surgery, and 3 months after surgery), 3 patients with benign prostatic hypertrophy (BPH), and 5 healthy subjects (as a control group). All of the samples were examined using a silver nanoparticle-based biosensor, and the sensitivity of the biosensor was simultaneously confirmed via qRT-PCR. The results were further analyzed together with clinical data such as PSA values and cancer stages.

View Article and Find Full Text PDF

Transactivation response (TAR) RNA-binding protein 2 (TRBP) plays a critical role in microRNA (miRNA) biosynthesis, with aberrant expression linked to various cancers. Previously, we identified , a phenyloxazole derivative that disrupts the TRBP-Dicer interaction in hepatocellular carcinoma (HCC). In this study, we optimized this scaffold and substituent, leading to the discovery of , a 2-phenylthiazole-5-carboxylic acid derivative with nanomolar inhibitory activity (EC = 0.

View Article and Find Full Text PDF

Elevated inflammatory reactions are a significant component in cerebral ischemia-reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen-glucose deprivation/reoxygenation (OGDR) condition.

View Article and Find Full Text PDF

Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs.

ACS Meas Sci Au

December 2024

Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Thermal cycling-based quantitative polymerase chain reaction (qPCR) represents the gold standard method for accurate and sensitive nucleic acid quantification in laboratory settings. However, its reliance on costly thermal cyclers limits the implementation of this technique for rapid point-of-care (POC) diagnostics. To address this, isothermal amplification techniques such as rolling circle amplification (RCA) have been developed, offering a simpler alternative that can operate without the need for sophisticated instrumentation.

View Article and Find Full Text PDF

MicroRNAs can be found intracellularly incorporated into extracellular vesicles (EV-miRNAs) or extracellularly as cell-free miRNAs (cf-miRNAs). This study aimed to compare the diagnostic and prognostic potential of four miRNAs with recognized roles in prostate cancer as cf-miRNAs and EV-miRNAs, obtained from liquid biopsies (LB). Total RNA was isolated from whole plasma and plasma EVs from 15 controls (CTR) and 30 patients (20 with localized prostate cancer (PCa), 10 with metastatic prostate cancer (mPCa)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!