Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR) in which only a small portion (≤ 0.1%) of the population expresses resistance to oxacillin (OXA) ≥ 10 µg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR). The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA) cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the adaptation that HeR-MRSA clinical strains undergo when exposed to β-lactam pressure, indicating that the energy production is redirected to supply the cell wall synthesis/metabolism, which in turn contributes to the survival response in the presence of β-lactam antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733780PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071025PLOS

Publication Analysis

Top Keywords

tca cycle
16
her/hor selection
16
β-lactam-mediated her/hor
12
energy production
8
heterogeneous expression
8
population expresses
8
expresses resistance
8
chromatography/mass spectrometry
8
resistance
5
exposure clinical
4

Similar Publications

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Metastasis causes most cancer deaths and reflects transitions from primary tumor escape to seeding and growth at metastatic sites. Epithelial-to-mesenchymal transition (EMT) is important early in metastasis to enable cancer cells to detach from neighboring cells, become migratory, and escape the primary tumor. While different phases of metastasis expose cells to variable nutrient environments and demands, the metabolic requirements and plasticity of each step are uncertain.

View Article and Find Full Text PDF

Sarcopenia is an age-related muscle disorder that increases risks of adverse clinical outcomes, but its treatments are still limited. Gut microbiota is potentially associated with sarcopenia, and its role is still unclear. To investigate the role of gut microbiota in sarcopenia, we first compared gut microbiota and metabolites composition in old participants with or without sarcopenia.

View Article and Find Full Text PDF

Combined Transcriptomics and C Metabolomics Analysis Reveals and Genes Involved in the Regulation of Efficient Cytidine Synthesis in .

ACS Synth Biol

January 2025

Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.

The development of an engineered strain for efficient cytidine production holds significant value for both research and industrial applications. In this study, the and genes were knocked out to reveal their roles involved in the regulation of efficient cytidine synthesis in . The results showed that after 36 h of shaking flask fermentation, the knockout strain NXBG-14 produced a cytidine concentration of 2.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!