Rationale: The extent of heart disease varies from person to person, suggesting that genetic background is important in pathology. Genetic background is also important when selecting appropriate mouse models to study heart disease. This study examines heart growth as a function of strain, specifically C57BL/6 and DBA/2 mouse strains.
Objective: In this study, we test the hypothesis that two strains of mice, C57BL/6 and DBA/2, will produce varying degrees of heart growth in both physiological and pathological settings.
Methods And Results: Differences in heart dimensions are detectable by echocardiography at 8 weeks of age. Percentages of cardiac progenitor cells (c-kit+ cells) and mononucleated cells were found to be in a higher percentage in DBA/2 mice, and more tri- and quad-nucleated cells were in C57BL/6 mice. Cardiomyocyte turnover shows no significant changes in mitotic activity, however, there is more apoptotic activity in DBA/2 mice. Cardiomyocyte cell size increased with age, but increased more in DBA/2 mice, although percentages of nucleated cells remained the same in both strains. Two-week isoproterenol stimulation showed an increase in heart growth in DBA/2 mice, both at cardiomyocyte and whole heart level. In isoproterenol-treated DBA/2 mice, there was also a greater expression level of the hypertrophy marker, ANF, compared to C57BL/6 mice.
Conclusion: We conclude that the DBA/2 mouse strain has a more immature cardiac phenotype, which correlates to a cardiac protective response to hypertrophy in both physiological and pathological stimulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734269 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070512 | PLOS |
mSphere
December 2024
Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Unlabelled: Myeloid phagocytes are essential for antifungal immunity against pulmonary and systemic infections. However, the molecular mechanisms underlying fungal clearance by phagocytes remain incompletely understood. In this study, we investigated the role of Perforin-2 () in antifungal immunity.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, N18 W9, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan.
Alveolar echinococcosis is a zoonosis caused by the larval stage of Echinococcus multilocularis. In previous studies, QTL analysis using C57BL/6 N (B6) and DBA/2 (D2) which differ in susceptibility suggested the presence of genes on chromosome 1 that control protoscolex development. In this study, we constructed several congenic mice with different chromosome 1 regions substituted to confirm the presence of responsible genes and to narrow down the regions where the responsible genes exist.
View Article and Find Full Text PDFChemMedChem
November 2024
Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy.
7-methyl-2-phenylimidazo[1,2-b]pyridazin-3-carboxylic acid (DM1) and 6-methoxy-2-phenylimidazo[1,2-b]pyridazin-3-carboxylic acid (DM2) have been shown to act as human (h) Cav voltage-gated calcium channel blockers with promising in vivo anti-absence activity, positioning them as potential antiepileptic drugs. The primary aim of this work was to develop cost-effective and environmentally friendly synthetic procedures for preparing 2-phenylimidazo[1,2-b]pyridazine derivatives. After optimizing the synthesis of this compound class using efficient and green techniques such as microwaves and ultrasound irradiation, we further evaluated the antiepileptic effects of DM1 and DM2 in two animal models: CD-1 ICR mice after pentylenetetrazol administration and DBA/2 mice with seizures induced by audiogenic stimuli.
View Article and Find Full Text PDFiScience
November 2024
Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
To identify the pathways that are coordinately regulated in pancreatic β cells, muscle, liver, and fat to control fasting glycemia we fed C57Bl/6, DBA/2, and Balb/c mice a regular chow or a high fat diet for 5, 13, and 33 days. Physiological, transcriptomic and lipidomic data were used in a data fusion approach to identify organ-specific pathways linked to fasting glycemia across all conditions investigated. In pancreatic islets, constant insulinemia despite higher glycemic levels was associated with reduced expression of hormone and neurotransmitter receptors, OXPHOS, cadherins, integrins, and gap junction mRNAs.
View Article and Find Full Text PDFMol Neurobiol
November 2024
Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
Glaucoma is a neurodegenerative disease characterized by progressive optic nerve degeneration and retinal ganglion cell (RGC) loss. In early glaucoma, before obvious axon loss, highly organized pathological processes in RGCs occur sequentially, involving axons, dendrites and synaptic terminals. The optic nerve head (ONH) is the critical structure of early glaucomatous neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!