Design guideline of Si nanohole/PEDOT:PSS hybrid structure for solar cell application.

Nanotechnology

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.

Published: September 2013

The finite element method is used to simulate light absorption in periodic hybrid Si nanohole (SiNH)/PEDOT:PSS arrays. The structural periodicity (P) and hole diameter (D) of the hybrid SiNH structure are varied to maximize light absorption. In terms of the solar cell performance under the AM1.5G spectrum, the highest ultimate efficiency achieved is 30.5%, when the D/P ratio is 0.8 and P is 600 nm. We have successfully fabricated the SiNH structure based on a low cost electroless chemical etching approach using a silver catalyst. The SiNH diameters formed vary from ∼200 to 300 nm, with periodicities from ∼300 to 1000 nm. The SiNH structure reveals a low average reflectance of 4% for incident light in the range 300 to 1100 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/35/355301DOI Listing

Publication Analysis

Top Keywords

sinh structure
12
solar cell
8
light absorption
8
design guideline
4
guideline nanohole/pedotpss
4
nanohole/pedotpss hybrid
4
structure
4
hybrid structure
4
structure solar
4
cell application
4

Similar Publications

High efficiency adsorption of boron by sodium alginate/polyethyleneimine/polysiloxane composite aerogel.

Int J Biol Macromol

January 2025

School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China. Electronic address:

In this work, a new biomass boron adsorbent of N-methyl-D-glucosamine embedded sodium alginate/polyethyleneimine/polysiloxane composite aerogel (SKPN) was reported. Relevant characterization proved that the aerogel exhibited 3D porous structure with plenty of hydroxyl and amino functional groups, which was beneficial to the diffusion of boron and the chelation between boron and SKPN. Various parameters affecting the adsorption performance including pH value, contact time initial concentration, temperature and reusability were investigated.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

Background:  Tuberculosis (TB) imposes a substantial physical and psychological burden on patients and their families. This study aimed to investigate the prevalence and predictors of depression and anxiety among pulmonary TB patients and their household contacts in Jamnagar, Gujarat, India.

Materials And Methods:  A cross-sectional study was conducted at TB units (TUs) in Jamnagar, Gujarat.

View Article and Find Full Text PDF

Soliton dynamics and nonlinear phenomena in quantum deformation has been investigated through conformal time differential generalized form of q deformed Sinh-Gordon equation. The underlying equation has recently undergone substantial amount of research. In Phase 1, we employed modified auxiliary and new direct extended algebraic methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!